Macro- and Micro-environmental Factors in Clinical Hepatocellular Cancer

Petr Pancoska^a and Brian I. Carr^b

We previously developed a network phenotyping strategy (NPS), a graph theory-based transformation of clinical practice data, for recognition of two primary subgroups of hepatocellular cancer (HCC), called S and L, which differed significantly in their tumor masses. In the current study, we have independently validated this result on 641 HCC patients from another continent. We identified the same HCC subgroups with mean tumor masses 9 cm x n (S) and 22 cm x n (L), $P < 10^{14}$. The means of survival distribution (not available previously) for this new cohort were also significantly different (S was 12 months, L was 7 months, $P < 10^{-5}$). We characterized nine unique reference patterns of interactions between tumor and clinical environment factors, identifying four subtypes for S and five subtypes for L phenotypes, respectively. In L phenotype, all reference patterns were portal vein thrombosis (PVT)-positive, all platelet/alpha fetoprotein (AFP) levels were high, and all were chronic alcohol consumers. L had phenotype landmarks with worst survival. S phenotype interaction patterns were PVTnegative, with low platelet/AFP levels. We demonstrated that tumor-clinical environment interaction patterns explained how a given parameter level can have a different significance within a different overall context. Thus, baseline bilirubin is low in S_1 and S_4 , but high in S_2 and S_3 , yet all are S subtype patterns, with better prognosis than in L. Gender and age, representing macro-environmental factors, and bilirubin, prothrombin time, and AST levels representing micro-environmental factors, had a major impact on subtype characterization. Clinically important HCC phenotypes are therefore represented by complete parameter relationship patterns and cannot be replaced by individual parameter levels.

Semin Oncol 41:185-194 © 2014 Elsevier Inc. All rights reserved.

he idea that tumors grow in part due to the influence of their environment is not new.¹ We understand tumor clinical environment to be any aspect of the milieu in which a tumor arises, that can potentially influence its behavior. Thus, age^{2,3} and gender⁴ can influence the hormonal milieu of the liver. We regard such clinical factors as macro-environmental. The altered liver function that is part of the changed cytokine and inflammatory marker cascade resulting from alcoholism or

© 2014 Elsevier Inc. All rights reserved.

hepatitis and that is reflected in blood bilirubin, albumin, INR, or ALT/AST levels, we consider to be clinically micro-environmental.^{5,6} Both the processes of hepatocarcinogenesis and growth of hepatocellular carcinoma (HCC) involve a two-way influence of the effects of hepatitis viruses, alcohol or carcinogenic mycotoxins on the liver, as well as the reaction of liver components to these chronic and damaging agents. At the level of tissue organization, there are changes in extra cellular matrix components, as well as angiogenesis and chronic inflammation, that are both consequent on the damage and then become necessary components of the developing tumor environment. Some of the biochemical processes have been identified to include oxidative stress, apoptosis, autophagy, and the immune system.⁷⁻⁹ The tumor stroma and micro-environment both have been shown to have characteristic and prognostic molecular signatures,^{10–15} but their components also are seen to be an attractive target for the new molecularly designed therapies.^{8,9,10} Some of the cell types that are involved, and their products, are now becoming identified.^{16–19} The effects of clinical

^aDepartment of Medicine and Center for Craniofacial and Dental Genetics, University of Pittsburgh, Pittsburgh, PA.

^bDepartment of Liver Tumor Biology IRCCS de Bellis, National Institute for Digestive Diseases, Castellana Grotte , BA, Italy.

Conflicts of interest: none.

Grant support: ERZ-CZ LL1201 (CORES) to P.P. and NIH grant CA 82723 to B.I.C.

Address correspondence to Brian I. Carr, MD, FRCP, PhD, IRCCS 'S. de Bellis', via Turi 27, 70013 Castellana Grotte (BA), Italy. E-mail: brianicarr@hotmail.com

^{0093-7754/-}see front matter

http://dx.doi.org/10.1053/j.seminoncol.2014.03.001

environment (macro and micro) on tumor biology are not simple, nor are the studies and questions and tools for finding answers. At the same time, novel experimental methods bringing detailed insights about the micro-environmental contributions to disease mechanisms are increasingly powerful. A methodology is needed for finding the optimal intersection of the clinical and molecular directions in tumor-environment research and its clinical interpretation and application. Ideally, tumor-environment models and their diagnostic and prognostic results should use these two information resources simultaneously, in the full mutual context. In this article, we open a clinical direction towards this unification with an approach prepared for incorporating both avenues. Our motivation is that if the standard clinical characterization of the patient in terms of our understanding of micro- and macroenvironmental clinical factors and the disease status can bring new insights. This would allow direct integration of the results of novel experimental and molecular biology studies with clinical practice data and thus improve the "bedside translation". We suggest and demonstrate here that with better characterization of the clinical disease heterogeneity, it is more likely that relevant hypotheses can be formulated and tested through complex studies with better design and patient status identification.

We present several novel results. First, we validated the Network Phenotyping Strategy (NPS)based classification model,²⁰ developed by us previously for recognition of HCC subtypes using the extensive screening data on 4,139 subjects.²¹ We applied this model without change, to independently collected data from another continent, and confirmed that the same HCC subtypes and the characteristic patterns of relationships were also identified. Since we had survival data for this new data set (which was not available in the previous study), we next showed that the identified HCC subtypes have significantly different survival and thus prognosis. With this additional validation, we then analyzed the clinical and relationship patternbased characteristics of the identified HCC subtypes and provided their interpretation in terms of the tumor-clinical environmental interactions.

METHODS

We approached the extraction of novel information from a standard set of baseline clinical parameter data at diagnosis, used in routine clinical practice clinic for HCC evaluation, in a way that allows us to better characterize HCC clinical heterogeneity. We have previously demonstrated that this can be done by application of graph theory tools. Mathematical graphs, when properly selected, can capture what at first sight are complicated relationship patterns, in an elegant and, most importantly, in a manageable and clinically understandable way. We call this new graph-based approach the Network Phenotyping Strategy (NPS).^{20,21} NPS transformation of clinical practice data enabled us to adopt a new paradigm in which we examined the levels of individual typical parameters used in standard baseline evaluation and clinical categorization of HCC within the context of all the other identified clinical parameters.

In the concrete application of this general approach to problems of HCC, the changed paradigm allowed us to use common clinical blood test parameters together with demographic descriptors, and gain novel information from analyzing the relationship patterns by considering their values and levels simultaneously. This novel paradigm is a mathematical incarnation of the common clinical question of the following type: a single 8-cm HCC mass in an apparently normal liver carries a quite different prognosis and treatment approach from a similar 8-cm mass in the presence of multiple cirrhotic nodules, elevated bilirubin, and/or ascites. We considered how to take all these important interrelationships simultaneously into account and understand their impact on the prognosis or treatment of a concrete patient. We demonstrate here that NPS transformation of the data enables not only highlevel analysis of information in the relationship patterns between all used clinical variables, but it also provides results in a form that is directly and simply interpretable in clinical terms.

Our NPS approach uses the clinical study and/or clinical practice data and with the consideration of all available clinical information that is relevant for the disease. This pre-processing of the data allows us to encode the standard clinical information in a consistent manner for very diverse data types as the partitions and vertices of a network graph, which in turn represent complete relationship patterns between the clinical data levels and types. Once this is done, it is trivial to represent a personal relationship pattern for every patient, since we generate a k-partite graph in which the actual clinical variable levels, found through the baseline diagnostic tests and data collection for an individual patient, are represented by separate vertices in the respective partitions. These actual levels are then connected by edges (lines), representing all co-occurrences of these levels in the concrete personal clinical profile.

The advantage of this approach is the simplicity of the next step, in which we capture the relationship pattern information from an entire cohort into a "study graph". The study graph is simply a union (generated by addition of all personal clinical profile relationship networks) of all personal k-partite graphs. In the study graph, the numbers of co-occurrence edges between respective levels of clinical variables carry information about the frequencies of the relationship. In the next step, with the use of graph theory mathematics, we then found the complete decomposition of the study graph into the linear combination of reference relationships patterns (RRP). These RRPs represent unique clinical profiles, which characterize the typical collective relationships between all considered variables, occurring frequently and with clinical significance in the original data. The RRPs were then used as "landmarks" in the disease clinical profile landscape, relative to which we measured an individual patient's clinical profiles.

To that effect, in the last NPS step, we extracted the personalized information for characterization of an individual patient's relationship pattern using the "closeness" between an individual's clinical pattern and all those RRPs, characterizing the HCC type heterogeneity. This closeness was computed as a vector of graph-graph distances between a personal relationship profile of an individual patient and all respective RRPs. With this definition, the graph distance has simple and clear clinical interpretation, namely, it is the total number of mismatches between the individual patient and the reference relationship profiles. The number of mismatches from one RRP defines one element of the personal distance vector. We found in the previous study that nine RRPs are necessary for characterization of HCC tumor phenotypes, which we validated here using a different dataset.

The NPS transformation of the HCC patient baseline variables thus constitutes a nine-element vector with element 1 indicating how a patient actual relationship profile is different from RRP₁ and element 2 indicating how a patient actual relationship profile is different from RRP2 etc. In this way, through the NPS transformation, the original "raw" clinical data are transformed into a simple numerical form that unifies encoding of variable levels with the actual pattern of the variable level relationships in every individual patient's clinical profile. Figure 1 shows an example of how parameter change impacts the relationship pattern. The lines (graph edges) are relationships found in one of the HCCspecific RRPs. While this RRP considers platelets with levels higher than 195 x 10^9 /L, a concrete patient had platelets level lower than this threshold with all remaining variable levels identical to the RRP. This single parameter level difference between individual and reference clinical profiles (7%) caused a change in nine of 45 (20%) relationships captured by NPS transformation of the HCC screening data (see Figure 1).

Clinical Data Collection

The baseline clinical presentation data of 641 US patients presenting for treatment of biopsy-proven unresectable HCC in an unscreened population was examined. On initial clinical evaluation, all patients had: baseline complete blood count, blood liver function tests, blood alpha fetoprotein (AFP) levels, and hepatitis serology, as well as physical examination, liver and tumor biopsy, and a triphasic helical computed axial tomography (CAT scan) scan of the chest, abdomen, and pelvis. The data and CAT descriptors were prospectively recorded and entered into an HCC database intended for followup and analysis. This analysis was done under a university institutional review board-approved protocol for the retrospective analysis of de-identified HCC patient records.

RESULTS

HCC Heterogeneity: Identification of Two General HCC Phenotypes

We present the first independent validation of the previously published results obtained by NPS analysis of HCC screening data from another HCC cohort, which was not part of a screening program. With these independent clinical data, we therefore followed without any modification all of the previously used steps in their preparation for NPS transformation and analysis. The first step was the definition of the partitions in the k-partite graph. That included a data-driven approach that simplified the relationship patterns to be analyzed.²¹ For this purpose, we previously used a special algorithm of graph theory, which found the maximal cut sub-graph in the complete weighted graph, representing all possible significant (P < .01)statistically correlations between eight blood test parameters. This algorithm is mathematically proven²² to find a single unique set of clinical variables that are all statistically significantly correlated and the sum of their correlation coefficients is maximal of all other possible combinations. We used this step to optimally represent by a single partition the two variables that carry equivalent information. These uniquely correlated pairs were: AST/ALT, AFP/platelets, albumin/hemoglobin, and bilirubin/INR.

By repeating the identical procedure with new data, we have shown that this unique, informationally optimal pairing of clinical variables was found without change and with preserved statistical significance of correlation coefficients also in the cohort studied here. This validated the first design feature of our NPS graph—that it was and is the 10partite graph (Figure 1), in which each partition represented one clinical component of the analyzed

Figure 1. Ten-partite graph used in NPS transformation of HCC screening data, which captures patterns of complete relationships between tumor and environmental parameters. Each box represents one partition, which in turn corresponds to one clinical variable. Note that eight blood parameters are represented in four pairs, each comprised of two significantly correlated clinical variables. Circles (graph vertices) represent the statuses of categorical variables (+ indicates present; -, absent; F, female; M, male; O, older than 55 years; Y, younger than 55 years) or levels of blood parameter pairs components (L indicates both parameter levels are from the two low terciles in the original study; H, one of both levels in the pair are from the upper terciles in the original study²¹). Solid lines (graph edges) show the unique information processed by NPS; they represent the complex pattern of relationships between all variable levels for a patient. This relationship pattern represents females, older than 55 years, with self-reported alcoholism, hepatitis B- and hepatitis C-positive, AST <4 IU/L and ALT <3.23 IU/L, albumin >4.0 g/dL and/or hemoglobin >14.9 g/dL, bilirubin >1.5 mg/dL and/or INR>77, platelets <195 x 10^3 /dL and AFP < 29,000 ng/dL, PVT-negative. Red lines show by example that any single parameter (here platelet/AFP levels) contributes to nine relationships in the complete pattern. By the dotted lines (green) we demonstrate how a single-parameter change (eq, platelet or AFP are high) results in the more informative change of the nine components of the original relationship pattern. Because the results of the NPS data transformation are independent of the variable ordering in the 10-partite graph, we grouped the macro-, micro-environmental, and tumor factors into adjacent sections as shown.

information. In addition to the four blood test pairs identified above, the remaining six graph partitions represented age, gender, alcoholism, hepatitis, and portal vein thrombosis (PVT) statuses.

The next step of the clinical definition of the 10partite graph needed for the NPS transformation of HCC screening data was defining the thresholds, allowing us to discretize the ranges of real valued clinical variables into low and high categories. In the

previous publications, we used a tercile approach to find these thresholds.²¹ Low category represented two terciles of original cohort patients, all having both levels lower than the given threshold, high category represented the upper tercile of patients with at least one variable level above the threshold. With the new data we found that all of the thresholds from our previous study also subdivided the US cohort into the terciles. This was evidence that the distributions of the collected clinical variables were equivalent in the two data sets and consequently that the parameters we selected for discretization of the clinical information in our NPS analysis are justified and independently valid in both cohorts. With validated thresholds, the high and low levels of clinical variables were then represented by the vertices in the respective partitions (Figure 1). We then used the actual data for every individual from the validation cohort and constructed personal 10partite graphs, representing the complete patterns of relationships between a patient's clinical profile levels.

In the current validation set, with substantially fewer patients compared to the training set, we implemented the stringent validation approach, confirming the RRPs that we found by a special graph theory algorithm, which decomposed the training study graph, representing union of 4,139 individual relationship patterns into a linear combination of RRPs are valid landmarks in the HCC clinical landscape of the validation cohort. The similarity and dissimilarity of a patient's individual clinical profile was defined by the number of personal screening data relationships identical to or different from the respective RRPs. The total number of these differences for each of nine RRPs, defined (through the nine-variable logistic regression model) the odds that a given individual patient's clinical screening profile represents an S-tumor or L-tumor HCC subtype.²¹

We therefore directly used the RRPs from the training set, generated the input of individual graph-RRP distance vectors with nine components for patients from the validation set. These were used as input into the S and L classification logistic regression equation, optimized in the training set. We used the computed odds to recognize two subgroups of the patients with predicted small (S) and large (L) tumor masses. With this strategy, the patients from the validation set were classified into HCC subtypes S and L directly by their relationship patterns derived from personal screening data. This was done independently of the information about the actual tumor masses. We found that 80.6% patients fell into the L group and 19.4% patients into the S subgroup. We then finalized the validation by comparing the distributions of the actual tumor masses in the S and L identified patient

Figure 2. Boxplots representing distributions of the (A) tumor masses (logarithm of maximal tumor size in cm x number of nodules) and (B) overall survivals (logarithm of survival in days) for the patients, classified by the previously developed nine-variable logistic regression model, computing odds for S (red) and L (blue) from the distances of patients' personal relationship profile graphs from graphs of RRPs. Box notches indicate distribution means.

subgroups (Figure 2A). The two means of tumor mass distributions were 22 [cm.n] for L and 9 [cm.n] for S patients. These means of tumor mass distributions in the two categories were significantly statistically different ($P < 10^{-14}$).

In addition, since we had survival data for this set that was not available for the training dataset, we did additional independent validation of clinical relevance of the NPS-recognized S and L subgroups of HCC patients. We found (Figure 2B) that there was significantly different survival between the two groups, S and L. The mean survival in the L subgroup was 7 months and that in the S subgroup was 12 months. This 1.7-fold difference in means of the survival distributions was again strongly statistically significant, $P < 10^{-5}$.

Influence of a Single Clinical Environmental Parameter Change on Phenotypes

With the above results validating the NPS results and identifying HCC subtypes in terms of the clinical tumor biology and disease outcome characteristics (prognosis), we gained more detailed insight into the HCC heterogeneity, its factors, and the role of the clinical environment interaction with the tumor by probing the clinically relevant details of the NPS classification model. The actual patient allocations into S or L HCC subtypes and the survival prognosis were derived by the nine-variable logistic regression model, which processed differences between the patients' relationship profiles and respective RRPs. Our previous NPS analysis of the tumor and clinical environment interaction had shown that the HCC clinical landscape is separated into two main regions. One was S, with smaller tumors having more variable relationship patterns of clinical parameters, and the other was L, with more stringent clinical parameter relationship characteristics. In

addition to this basic differentiation, our analysis provides further differentiation of these two subcategories, which is defined by the clinical landmark statuses of two classes of the nine RRPs. There are four RRPs, which are located in the S-tumor region (Table 1A) and five RRPs (Table 1B) associated with L tumors. Here "location" or "association" of RRP with a particular clinical state of RRPs is understood as the data-driven feature of the patient's clinical data, revealed by the pattern-based information processing we introduced through NPS. The actual clinical profiles of HCC patients are unevenly distributed for subjects with typically S or L data patterns. In addition to the primary S/L division, there are additional heterogeneities in patient clinical data relationship patterns within these two main subcategories and RRPs represent the "focal points" of them. This role of RRPs, as validated here to be well-defined and characteristic descriptors of the tumor and clinical environment, allows us to obtain further insight by detailed analysis of the response to single parameter changes, into the NPS-derived subtype assignment of S or L.

The advantage (see Figure 1) of this novel patternbased NPS analysis paradigm is that single parameter changes induce extensive variation of the original relationship pattern, which brings a new level of clinical information and can be traced to the functional aspects of the environment–tumor interactions. Full results of this analysis are summarized in Table 1. We next give two representative examples demonstrating how we arrived at the main result of this analysis, namely, that there are three basic types of clinical consequences of these variations in patient tumor phenotype subgroup and hence in prognosis.

In a first example, the first panel of Table 1A defines the S_1 subtype of the S-tumor phenotype. The clinical meaning of the RRP, that is, the clinical

														_	-						-			
A) S-tun	nor sub	btype :	associa	ited Re	ference R	elation	ship P	atterns	5															
S1	from	to	L-odds	S-odds	SZ	from	to	L-odds	S-odds	S 3	from	to	L-odds	S-odds	S4	from	to	L-odds	S-odds					
reference			41.7	58.3	reference			31.8	68. 2	reference			17.8	82.2	reference			45.9	54.1					
PVT	-	+	83	17	PVT	-	+	76.1	23.9	PVT	-	+	55.2	44.8	PVT	-	+	81.6	18.4					
Gender	м	F	38.5	61.5	Gender	м	F	30.4	69.6	Gender	F	м	19.9	80.1	Gender	м	F	44.2	55.8					
Age	0	Y	38.4	61.6	Age	Y	0	35	65	Age	0	Y	18.6	81.4	Age	Y	0	49.4	50.6					
Alcohol	•	+	50	50	Alcohol	-	+	53.2	46.8	Alcohol	+	-	13.4	86.6	Alcohol	-	+	67.3	32.7					
НерВ	+	-	42.1	57.9	НерВ	-	+	30.3	69.7	НерВ	+	-	26.3	73.7	НерВ	-	+	45.5	54.5					
HepC	-	+	33.7	66.3	HepC	+	-	53.5	46.5	HepC	+	-	23.4	76.6	HepC	-	+	38.9	61.1					
AST/ALT	Low	High	60	40	AST/ALT	High	Low	29.3	70.7	AST/ALT	Low	High	35.8	64.2	AST/ALT	Low	High	80.1	19.9					
Alb/Hemo	Low	High	28.5	71.5	Alb/Hemo	Low	High	28.9	71.1	Alb/Hemo	High	Low	35.2	64.8	Alb/Hemo	High	Low	60.4	39.6					
Bili/INR	Low	High	38.4	61.6	Bili/INR	High	Low	34.9	65.1	Bil i/IN R	High	Low	25.7	74.3	Bili/INR	Low	High	70.6	29.4					
			CO 0	26.7	Distalat/ASD	Low	High	83.6	16.4	Platelet/AFP	Low	High	70.3	29.7	Platelet/AFP	High	Low	26	74					
Platelet/AFP	Low	High	03.3	30.7	FIGUEIEVAFF			0510				-												
Platelet/AFP		High	03.3	ted Re		elation	chin D	attern																
B) L-tun	Low	High btype :	associa	ited Re	ference R	elation	ship P	atterns	6															
Platelet/AFP B) L-tun	Low nor sub	to	associa	ted Re	eference R	elation	ship P	atterns	S-odds	L3	from	to	L-odds	S-odds	L4	from	to	L-odds	S-odds	L5	from	to	L-odds	S-odds
Platelet/AFP B) L-tun L1 reference	Low nor sub	to	associa	30.7 Ited Re 5-odds 13.7	reference Ri	elation from	ship P	atterns	5- odds 0.6	L3 reference	from	to	L-odds	5-odds 2.9	L4 reference	from	to	L-odds 96.4	S-odds 3.6	<mark>L5</mark> reference	from	to	L-odds 94.4	S-odds 5.6
Platelet/AFP B) L-tun L1 reference PVT	Low nor sub from +	to	63.3 associa L-odds 86.3 59.1	30.7 sted Re S-odds 13.7 40.9	eference Re L2 PVT	elation from	ship P to	atterns L-odds 99.4 96.9	S-odds 0.6 3.1	L3 reference PVT	from +	to •	L-odds 97.1 86.3	S-odds 2.9 13.7	L4 reference PVT	from +	to -	L-odds 96.4 86.2	S-odds 3.6 13.8	L5 reference PVT	from +	to -	L-odds 94.4 79.6	S-odds 5.6 20.4
Platelet/AFP B) L-tun L1 reference PVT Gender	Low nor sub from + F	to High	63.3 associa L-odds 86.3 59.1 89	36.7 sted Re <u>S-odds</u> 13.7 40.9 11	eference Ri L2 PVT Gender	elation from + M	ship P to •	L-odds 99.4 99.2	S-odds 0.6 3.1 0.8	L3 reference PVT Gender	from + M	to •	L-odds 97.1 86.3 96.2	S-odds 2.9 13.7 3.8	L4 reference PVT Gender	from + F	to - M	L-odds 96.4 86.2 97.2	S-odds 3.6 13.8 2.8	<mark>L5</mark> reference PVT Gender	from + F	to - M	L-odds 94.4 79.6 95.9	S-odds 5.6 20.4 4.1
Platelet/AFP B) L-tun reference PVT Gender Age	Low nor sub from + F Y	High to to M O	03.3 associa L-odds 86.3 59.1 89 85.7	5- odds 13.7 40.9 11 14.3	risterence Ri L2 reference PVT Gender Age	elation from + M 0	ship P to - F Y	atterns L-odds 99.4 96.9 99.2 99.4	S-odds 0.6 3.1 0.8 0.6	L3 reference PVT Gender Age	from + M Y	to - F O	L-odds 97.1 86.3 96.2 97.1	S-odds 2.9 13.7 3.8 2.9	L4 reference PVT Gender Age	from + F Y	to - M 0	L-odds 96.4 86.2 97.2 96.3	S-odds 3.6 13.8 2.8 3.7	<mark>L5</mark> reference PVT Gender Age	from + F O	to - M Y	L-odds 94.4 79.6 95.9 94.7	S-odds 5.6 20.4 4.1 5.3
Platelet/AFP B) L-turn reference PVT Gender Age Alcohol	Low nor sub from + F Y +	High to to M O -	63.3 associa L-odds 86.3 59.1 89 85.7 72.1	38.7 sted Re 5-odds 13.7 40.9 11 14.3 27.9	ference R reference PVT Gender Age Alcohol	elation from + M 0 +	ship P to • • • •	atterns L-odds 99.4 96.9 99.2 99.4 98.7	S-odds 0.6 3.1 0.8 0.6 1.3	L3 reference PVT Gender Age Alcohol	from + M Y +	to - F O -	L-odds 97.1 86.3 96.2 97.1 95.4	S-odds 2.9 13.7 3.8 2.9 4.6	L4 reference PVT Gender Age Alcohol	from + F Y +	to - M 0 -	L-odds 96.4 86.2 97.2 96.3 94.5	S-odds 3.6 13.8 2.8 3.7 5.5	L5 reference PVT Gender Age Alcohol	from + F 0 +	to - M Y -	L-odds 94.4 79.6 95.9 94.7 88.8	S-odds 5.6 20.4 4.1 5.3 11.2
Platelet/AFP B) L-turn reference PVT Gender Age Alcohol HepB	Low nor sub from + F Y +	High btype : to - M 0 - +	b3.3 associa L-odds 86.3 59.1 89 85.7 72.1 79.2	5-odds 13.7 40.9 11 14.3 27.9 20.8	reference Ru reference PVT Gender Age Alcohol HepB	elation from + M 0 +	ship P to F Y +	atterns L-odds 99.4 96.9 99.2 99.4 98.7 99.1	S-odds 0.6 3.1 0.8 0.6 1.3 0.9	L3 reference PVT Gender Age Alcohol Hep8	from + Μ Υ + +	to - F O -	L-odds 97.1 86.3 96.2 97.1 95.4 98.1	S-odds 2.9 13.7 3.8 2.9 4.6 1.9	L4 reference PVT Gender Age Alcohol Hep8	from + F Y +	to - M 0 -	L-odds 96.4 86.2 97.2 96.3 94.5 97.8	S-odds 3.6 13.8 2.8 3.7 5.5 2.2	L5 reference PVT Gender Age Alcohol HepB	from + F 0 +	to - M Y - +	L-odds 94.4 79.6 95.9 94.7 88.8 91.1	S-odds 5.6 20.4 4.1 5.3 11.2 8.9
Platelet/AFP B) L-tun reference PVT Geneta Age Alcohol HepB HepC	Low nor sub from + F Y + - +	High btype : to - M O - +	b3.3 associa L-odds 86.3 59.1 89 85.7 72.1 79.2 89.3	30.7 ted Re 5-odds 13.7 40.9 11 14.3 27.9 20.8 10.7	Facequere ference Re PVT Gender Alcohol HepB HepC	elation from + M 0 + -	ship P to - F Y - + +	atterns L-odds 99.4 96.9 99.2 99.4 98.7 99.1 98.5	S-odds 0.6 3.1 0.8 0.6 1.3 0.9 1.5	L3 reference PVT Gender Age Alcohol HepB HepC	from + M Y + +	to - - - - +	L-odds 97.1 86.3 96.2 97.1 95.4 98.1 92.7	S-odds 2.9 13.7 3.8 2.9 4.6 1.9 7.3	L4 reference PVT Gender Age Alcohol Hep8 HepC	from + F Y + +	to - M 0 - -	L-odds 96.4 86.2 97.2 96.3 94.5 97.8 97.4	S-odds 3.6 13.8 2.8 3.7 5.5 2.2 2.6	LS reference PVT Gender Age Alcohol HepB HepC	from + F O + -	to - M Y - +	L-odds 94.4 79.6 95.9 94.7 88.8 91.1 95.8	S-odds 5.6 20.4 4.1 5.3 11.2 8.9 4.2
Platelet/AFP B) L-turn reference PVT Gender Age Alcohol HepB HepC AST/ALT	Low from + F Y + - Low	High btype : to - M 0 - + - High	b3.3 associa L-odds 86.3 59.1 89 85.7 72.1 79.2 89.3 94.2	36.7 s-odds 13.7 40.9 11 14.3 27.9 20.8 10.7 5.8	Facequere ference Re PVT Gender Alcohol HepB HepC AST/ALT	from from M O + - High	ship P to • F Y • + Low	atterns L-odds 99.4 96.9 99.2 99.4 98.7 99.1 98.5 98.7	S-odds 0.6 3.1 0.8 0.6 1.3 0.9 1.5 1.3	L3 reference PVT Gender Age Alcohol HepB HepC AST/ALT	from + M Y + + High	to - F O - - + Low	L-odds 97.1 86.3 96.2 97.1 95.4 98.1 92.7 87.4	S-odds 2.9 13.7 3.8 2.9 4.6 1.9 7.3 12.6	L4 reference PVT Gender Age Alcohol Hep8 HepC AST/ALT	from + F Y + + + Low	to - M 0 - - - High	L-odds 96.4 86.2 97.2 96.3 94.5 97.8 97.8 97.4 95.8	S-odds 3.6 13.8 2.8 3.7 5.5 2.2 2.6 3.2	L5 reference PvT Gender Age Alcohol HepB HepC AST/ALT	from + F O + + + Low	to - M Y - + High	L-odds 94.4 79.6 95.9 94.7 83.8 91.1 95.8 97.8	S-odds 5.6 20.4 4.1 5.3 11.2 8.9 4.2 2.2
Platelet/AFP B) L-turn reference PVT Gender Age Alcohol HepB HepC AST/ALT Alb/Hemo	Low from + F Y + + Low High	High btype ; to - M 0 - + High Low	b3.3 associa L-odds 86.3 59.1 89 85.7 72.1 79.2 89.3 94.2 91.9	36.7 s-odds 13.7 40.9 11 14.3 27.9 20.8 10.7 5.8 8.1	ference R reference R PvT Gender Age Alcohol HepB HepC AST/ALT Alb/Hemo	from from + M 0 + - High Low	ship P to F Y + Low High	L-odds 99.4 96.9 99.2 99.4 98.7 99.1 98.5 98.7 99.3	S-odds 0.6 3.1 0.8 0.6 1.3 0.9 1.5 1.3 0.7	L3 reference PVT Gender Age Alcohol Hep8 HepC AST/ALT Alb/Hemo	from + M Y + - High High	to - F O - - + Low Low	L-odds 97.1 86.3 96.2 97.1 95.4 98.1 92.7 87.4 96.3	S-odds 2.9 13.7 3.8 2.9 4.6 1.9 7.3 12.6 3.7	L4 reference PVT Gender Age Alcohol Hep8 HepC AST/ALT Alb/Hemo	from + F Y + + Low Low	to - M - - - High High	L-odds 96.4 86.2 97.2 96.3 94.5 97.8 97.8 97.4 96.8 91.5	S-odds 3.6 13.8 2.8 3.7 5.5 2.2 2.6 3.2 8.5	L5 reference PVT Gender Age Alcohol HepB HepC AST/ALT Alb/Hemo	from + F O + + Low High	to M Y + High Low	L-odds 94.4 79.6 95.9 94.7 88.8 91.1 95.8 97.8 97.7	S-odds 5.6 20.4 4.1 5.3 11.2 8.9 4.2 2.2 2.3
Platelet/AFP B) L-turn reference PVT Gender Age Alcohol HepB HepC AST/ALT Alb/Hemo Bili/INR	Low from + F Y + Low High Low	High btype ; to - M 0 - + High Low High	63.3 associa L-odds 86.3 59.1 89 85.7 72.1 79.2 89.3 94.2 91.9 94.7	36.7 ted Re 5-odds 13.7 40.9 11 14.3 27.9 20.8 10.7 5.8 8.1 5.3	ference Ri reference Ri PVT Gender Age Alcohol HepB HepC AST/ALT Alb/Hemo Bill/INR	elation from + M 0 + - High Low High	ship P to F Y + Low High Low	atterns L-odds 99.4 96.9 99.2 99.4 98.7 99.1 98.5 98.7 99.3 97.6	S-odds 0.6 3.1 0.8 0.6 1.3 0.9 1.5 1.3 0.7 2.4	L3 reference PVT Gender Age Alcohol Hep8 HepC AST/ALT Alb/Hemo Bill/INR	from + M Y + + High High Low	to F O - + Low High	L-odds 97.1 86.3 96.2 97.1 95.4 98.1 92.7 87.4 96.3 98.9	S-odds 2.9 13.7 3.8 2.9 4.6 1.9 7.3 12.6 3.7 1.1	L4 reference PVT Gender Age Alcohol Hep8 HepC AST/ALT Alb/Hemo Bil//NR	from + F Y + + Low Low High	to M O - High High Low	L-odds 96.4 86.2 97.2 96.3 94.5 97.8 97.8 97.4 95.8 91.5 87.3	S-odds 3.6 13.8 2.8 3.7 5.5 2.2 2.6 3.2 2.6 3.2 8.5 12.7	L5 reference PvT Gender Age Alcohol Hep8 HepC AST/ALT Alb/Hemo Bill/INR	from + F O + + Low High	to M Y + High Low Low	L-odds 94.4 79.6 95.9 94.7 88.8 91.1 95.8 91.1 95.8 97.8 97.7 85.7	S-odds 5.6 20.4 4.1 5.3 11.2 8.9 4.2 2.2 2.3 14.3
Platelet/AFP B) L-turn reference PVT Gender Age Alcohol HepB HepC AST/AHEmo Bil/I/IR Platelet/AFP	Low from sub + F Y + Low High Low	High btype : to - M O - + + Low High Low	b3.3 associa L-odds 86.3 59.1 89 85.7 72.1 79.2 89.3 94.2 91.9 94.7 77.3	36.7 ted Re 5-odds 13.7 40.9 11 14.3 27.9 20.8 10.7 5.8 8.1 5.3 22.7	reference Re PVT Gender Age Alcohol Hep8 HepC AST/ALT Alb/Hemo Bili/I/IR Platelet/AFP	elation from + M O + High Low High High	ship P to F Y + Low High Low Low	atterns L-odds 99.4 96.9 99.2 99.4 98.7 99.1 98.5 98.7 99.3 97.6 95.1	S-odds 0.6 3.1 0.8 0.6 1.3 0.9 1.5 1.3 0.7 2.4 4.9	L3 reference PVT Gender Age Alcohol HepB HepC AST/ALT Alb/Hemo Bill/INR Platelet/AFP	from + M + + + High High Low High	to F O - + Low High Low	L-odds 97.1 86.3 96.2 97.1 95.4 98.1 92.7 87.4 96.3 98.9 94.7	S-odds 2.9 13.7 3.8 2.9 4.6 1.9 7.3 12.6 3.7 1.1 5.3	L4 reference PVT Gender Age Alcohol Hep8 HepC AST/ALT Alb/Hemo Bill/INR Platelet/AFP	from + F + + + Low Low High	to M O - High High Low Low	L-odds 96.4 86.2 97.2 96.3 94.5 97.8 97.4 96.8 91.5 87.3 76.4	S-odds 3.6 13.8 2.8 3.7 5.5 2.2 2.6 3.2 2.6 3.2 8.5 12.7 23.6	L5 reference PVT Gender Age Alcohol HepB HepC AST/ALT Alb/Hemo Bili/INR Platelet/AFP	from + F O + + Low High High	to M Y - High Low Low	L-odds 94.4 79.6 95.9 94.7 88.8 91.1 95.8 97.8 97.7 85.7 67	S-odds 5.6 20.4 4.1 5.3 11.2 8.9 4.2 2.2 2.3 14.3 33

Table 1. Results of Systematic Analysis of Single-Parameter Change in S and L-Tumor Associated Reference Relationship Patterns on the Odds Used to Diagnose S or L HCC Phenotype

NOTE. In all panels, orange highlights the forbidden parameter changes, green highlights the changes that improve and white reduces, but not changing the odds for respective phenotypes after the parameter change (top row), all relatively to reference relationship patterns (top row). See text for details. Please see journal website for color Table.

pattern serving as a focus for the cluster of patients with this HCC subtype, is found in the first ("from") column of the S_1 sub-table. This is a male patient, older than 55 years, with no self-reported alcoholism, hepatitis B antigen-positive, hepatitis C antigen-negative, AST <4 IU/L and ALT < 3.23 IU/L, albumin < 4.0 g/dL, hemoglobin < 14.9 g/dL, bilirubin <1.5 mg/dL, INR <77 , platelets <195 x 10^{3} / dL, and AFP < 29,000 ng/dL, PVT-negative. The "reference" column of the panel indicates that for a patient whose actual clinical profile would be exactly identical with this S_1 RRP, the odds for diagnosis of HCC tumor types are 58.3% for S and 41.7% for L, respectively (top, Reference row). This parameter pattern defines the association of S₁ with S-tumor phenotype.

The second column ("to") identifies a single clinical parameter state change from the original S_1 level to the level indicated in this column, which we tested. Note that all remaining nine parameters were kept at their original levels in the S_1 RRP. In the last two columns we reported the odds for L and S tumor subtypes, as they are computed after the tested clinical variable level change. This process was repeated systematically and independently for all 10 single clinical variable level changes (these results are shown in the variable-labeled rows, below the Reference row of Table 1). Three types of response of the HCC classification to any single parameter change were found. We explain these three categories below and show them in graphical representation in Figure 3.

The first category is highlighted in green (Figure 3A). These are changes that strengthen the

identification of the S tumor relative to the clinical pattern status identical to the RRP S₁. For patients similar to S₁ subtype of S tumor and in the order of improving the odds of an S diagnosis, these changes are (1) either increase hemoglobin level above 14.9 g/dL, or increase of albumin level above 4.0 g/dL or having both these levels high; (2) hepatitis C antigen changing from negative to positive; (3) individual changes from male to female, from patient older than 55 years to younger and levels of bilirubin and INR from levels lower than the above presented thresholds to levels higher in either of them or both, also increase the S-diagnosis odds in comparable manner. Thus, both macroand microenvironmental changes in a single parameter change the odds of such a patient being in the S or L phenotype.

The second category of odds responses to a single parameter change were left white in Table 1A (Figure 3B). If, in contrast to the original relationship pattern in S_1 , patient reports alcoholism or hepatitis B is not diagnosed, that decreases the odds but still identifies a patient as having an S-tumor subtype.

The third category was highlighted in orange in Table 1A (Figure 3C). These are changes, which we interpret as forbidden, because they change the reference relationship pattern S_1 in the HCC clinical landscape populated by actual personal clinical relationship patterns characteristic to S tumor in such a way that the distances from this altered RRP are suddenly wrongly described by higher odds for the L-tumor subtype. These three "forbidden" single parameter changes (from absence to presence of PVT, the AST/ALT inflammation markers and

Figure 3. Three types of response of the S_1 RRP to the single parameter change. (A) Pattern relationships that responded to change by improving S-type diagnosis (green relationship edges); (B) pattern relationship that responded to change by moderately reducing the odds for S-type diagnosis (red relationship edge); (C) pattern relationships that are forbidden (see text for explanation; black relationship edges); (D) complete picture of all tree relationship types in the complete relationship pattern S_1 . Please see journal website for color Figure.

platelet/AFP markers increasing from low to high levels) thus have to stay in the original S_1 RRPdefined levels. This category of single parameter changes therefore represents a relationship subpattern, which is the most characteristic for the S_1 subtype of S tumor.

In Figure 3D we integrated these responses of the S_1 -tumor subtype prognosis changes into a complete scheme and also added relationships that go beyond the single-parameter ones to pairwise and higher order ones (this is possible because of additive terms in logistic regression equation computing the odds).

A second example of the influence of a single parameter change is from the third panel in Table 1A, showing properties of the S_3 subtype of

S tumors. For this S-tumor subtype, there are only two characteristic parameters that are forbidden (from absence to presence of PVT and platelet/AFP markers changing from low to high, shown in red). Only a change of reported alcoholism to no alcoholism increases the S-tumor odds relatively to original S₃-pattern result. All remaining allowed changes decreased the S-tumor odds, with the microenvironmental inflammatory marker AST/ALT change from low to high and albumin/hemoglobin change from high to low having the largest impact. Note that absence of PVT is a common non-variable and therefore the most characteristic feature of S tumors (this emerged directly from the data relationship analysis). The low platelet/AFP levels are required for three of four S-tumor subtypes.

Results of the systematic single parameter level variations for the five L-tumor subtypes (Table 1B) can be summarized as follows: the 10-variable relationship patterns associate with these more aggressive and worst survival prognosis tumors are very characteristic, resulting in a very clear diagnosis (all reference odds are close to 90% and higher). With such very structured relationship patterns (out of many and many theoretically possible) that we identified in our NPS analysis, single parameter changes do not induce significant changes in the L-tumor characterization. Thus, in contrast to S tumors, L tumors are not amenable to subtype change as a result of single parameter changes.

DISCUSSION

It has been long recognized in HCC studies that unlike many other tumors, prognosis depends upon both tumor and micro-environment factors (liver inflammation), as well as macro-environmental factors such as age and gender. In order to discuss these combinations of various factors, a variety of approaches have been taken,²³ such as multivariable regression, principal component analysis,²⁴⁻²⁸ or networks.^{27,29–32} neural Regression methods become too complicated for considering complete tumor-environment interactions; and the principal component and neural network analyses provide statistically significant associations for diagnosis and prognosis, which are difficult to interpret in simple clinical terms.

The motivation of our approach was to concentumor-environment interactions trate on bv (1) designing an NPS to characterize these interactions using the correct number of RRPs, and (2) extracting the diagnostic and prognostic information individually and quantitatively by comparing personal patterns of these interactions for individual patients to reference relationship patterns that have clear clinical interpretation. This approach was developed on a previous cohort showing that the HCC patients in that cohort could be described within two broad phenotypes, S and L, which differed significantly with respect to tumor mass. The significance of these two HCC phenotypes was validated here in two ways. First, without any change of the NPS model, the means of tumor mass distributions in this cohort were different with significance $P < 10^{-14}$. Second, the clinical importance of this is that overall survival was also significantly different between the two groups $P < 10^{-5}$. This significance of the two phenotypes for disease outcome allowed us to begin to interpret the results in more details.

Within these two phenotypes, we recognized four patterns within S and five patterns within L

phenotype. Each phenotypic pattern comprised unique combination of relationship between the levels of 10 clinical parameters, which in turn represent different interactions between the tumor and environment factors. The NPS results showed that patient relationship patterns are unevenly distributed in the tumor-environment landscape with RRPs' landmarks, such that there are patients who, by the nature of the complete relationship between their tumor and clinical environment interactions, are related to one, but distant to most or all other RRPs. It is this heterogeneity that underpins the functionality of our approach and allows for even more detailed testing of the clinical significance of this result. We systematically changed individual single parameters in each of the nine subgroups and then we examined the clinical consequences in terms of the resultant phenotypic assignation that resulted from the complex change in pattern of relationships between all of the tumor and clinical environment parameters, consequent on that minimal level change in any one of them. This computational exercise provided interesting insight into the different nature of the two tumor phenotypes.

For each of the S-phenotype patterns we found clinical parameters that cannot be changed from the original reference levels defined in RRPs, together with clinical parameters whose levels can be varied to alternative levels. For example, presence of PVT-positivity was invariable or inadmissible in all four S subtypes, since its presence resulted in a relation-ship between the tumor and environmental parameters that was not observed within the training nor validation HCC patterns. By contrast, change in micro-environmental parameters such as bilirubin (S₁, S₂, and S₃) or AST (S₂, S₃) resulted in a change in the odds ratio within the S phenotype in some of the four S phenotypes (Table 1A).

By contrast, the characterization of L-tumor phenotype did not require any invariable levels of any clinical parameter. It is solely the unique relationship patterns between majority of the clinical parameters, captured by the unique patterns L_1-L_5 , that characterize the L phenotype. This importance of tumorclinical environment relationship pattern is such that change in an individual parameter had no significant effect on the L-phenotype recognition.

The main result of our approach, by examining micro- and macro-environmental interactions using non-arbitrary, data- and disease-defined RRPs, allowed us to identify the impact of the large number of tumor-clinical environmental interactions, leading to the identification of just a limited number of patterns. Most importantly, we demonstrated that tumor-clinical environment interaction patters explained how the same level of an individual parameter can have a different diagnostic and/or prognostic meaning within a different overall context. As an example, the baseline bilirubin level is low in S_1 and S_4 , but high in S_2 and S_3 , yet all of them are S-subtype patterns. By careful analysis of these different relationship contexts, it is obvious that there is no simple (binary) clinical association to other parameters that would link both high and low bilirubin levels to the same tumor phenotype. We therefore believe that minimal meaningful clinical information for recognizing HCC phenotypes needs to use the complete parameter patterns and not individual parameter levels or their simple combinations.

Returning back to the actual reference patterns, they also comprise previously known facts. For example, in the L phenotype, all reference patterns L1-L5 are PVT-positive, all platelet/AFP levels are high, and all are alcohol self-reporting, so that the tumor factors contributing to these phenotype landmarks with the worst survival prognosis are the most aggressive in the conventional clinical sense. Another example uses the fact that it has previously been shown the female gender macro-environmental influence is associated with a less aggressive HCC phenotype. This is fully compatible with our patternbased result for S-phenotype RRPs single-parameter changes. In the S phenotype, only S₃ incorporated female gender and the reference odds for S phenotype were the highest among all four S subphenotypes. In the remaining S characteristic patterns S_1 , S_2 , and S_4 , the impact of change in gender from male to female on the complete pattern of the tumor-clinical environment relationship pattern resulted in increasing S odds. Thus, PVT, platelets, and female gender seem to have an overwhelming influence on phenotype.

If the biology underlying the levels of the assayed screening panel of clinical parameters includes processes that are clinically relevant for the status of the tumor microenvironment, then the change of paradigm in how the "conventional" information is processed will change how these apparently "simple" but extensively used information resources can start contributing to a "higher level" tumor microenvironment understanding. Using clinical profile patterns, removing the obscurity from them, having a non-statistical tool for how to take the standard screening data and convert them (without losing the study statistical power) into a new form of information, where the internal tumor growth factors are directly considered in the deterministic number of clinically well-characterized microenvironment context, provides just that necessary clinical landscape, from which more detailed and complex tumor microenvironment research (and its translation to bedside) can benefit most. After validating these insights in terms of the patient's clinical relationship

profile distances from the RRP's landmarks, more detailed analysis of just that limited, but optimal number of landmark clinical statuses, around which patients with a given HCC subtypes are clustered, is possible. We can then, instead of reporting on the significance of age or gender or alcoholism, investigate the different prognostic and clinical impact on the patterns of all three of these parameters together as contributors to tumor biology. We have done this systematically, which has led to the identification of specific collections of clinical states and relationship subpatterns that characterize individual sub-states of HCC and the characteristics of associated clinical environments.

There were clinical differences between the training set and the current US set. Most patients from the validation study cohort were not diagnosed through screening, so that they tended to have more advanced disease than the training set patients. This clinical difference between the training and validation cohorts is seen in our results. Besides other evidence, we can see it primarily in the numbers of the recognized the S- and L-tumor subtypes. In the training set, we found nearly balanced fractions of patients in the L and S sub-cohorts (50.8% in L and 49.1 in S). In the current US patient validation cohort, we have identified 80.6% patients with L- and 19.4% with S-tumor subtypes.

At the same time, in current validation US patients, we used the same thresholds for dichotomization of blood parameter pairs into low and high levels. In the training study, the definition of these parameters was strictly by tumor size terciles. After looking at the distributions of the patients with the high and low levels of all blood test pairs, we found that in this clinically more progressed disease cohort, the distribution of these low and high levels of the blood parameters are very close to tercile-related proportions of two-thirds patients with low parameter levels and one-third of patients with high clinical variable levels for all four blood test parameter pairs.

In one clinical micro-/macro-environment, a single parameter level can have one diagnostic meaning, while in another clinical environment the meaning of the same parameter level is completely different. Only by analyses such as this, which brings the blood test levels into the proper context of the datacaptured clinical environment interactions, we can properly interpret all of these levels, This in turn is one of the main reasons behind the ability of this approach to identify S and L HCC tumor subtypes.

REFERENCES

1. Paget S. The distribution of secondary growths in cancer of the breast. 1889. Cancer Metastasis Rev. 1989;8:98–101.

- 2. Carr BI, Pancoska P, Branch RA. HCC in young adults. Hepatogastroenterology. 2010;57:436-40.
- 3. Carr BI, Pancoska P, Branch RA. HCC in older patients. Dig Dis Sci. 2010;55:3584-90.
- 4. Buch SC, Kondragunta V, Branch RA, Carr BI. Genderbased outcomes differences in unresectable hepatocellular carcinoma. Hepatol Int. 2008;2:95–101.
- Carr BI, Pancoska P, Branch RA. Tumor and liver determinants of prognosis in unresectable hepatocellular carcinoma: a large case cohort study. Hepatol Int. 2010;4:396-405.
- 6. Carr BI, Guerra V. HCC and its microenvironment. Hepatogastroenterology. 2013;60:1433-7.
- Hernandez-Gea V, Toffanin S, Friedman SL, Llovet JM. Role of the microenvironment in the pathogenesis and treatment of hepatocellular carcinoma. Gastroenterology. 2013;144:512-27.
- 8. Wu SD, Ma YS, Fang Y, Liu LL, Fu D, Shen XZ. Role of the microenvironment in hepatocellular carcinoma development and progression. Cancer Treat Rev. 2012;38:218–25.
- 9. Yang JD, Nakamura I, Roberts LR. The tumor microenvironment in hepatocellular carcinoma: current status and therapeutic targets. Semin Cancer Biol. 2011;21:35-43.
- 10. Budhu A, Forgues M, Ye QH, et al. Prediction of venous metastases, recurrence, and prognosis in hepatocellular carcinoma based on a unique immune response signature of the liver microenvironment. Cancer Cell. 2006;10:99–111.
- **11.** Chew V, Tow C, Teo M, et al. Inflammatory tumour microenvironment is associated with superior survival in hepatocellular carcinoma patients. J Hepatol. 2010;52:370-9.
- 12. Hoshida Y, Villanueva A, Kobayashi M, et al. Gene expression in fixed tissues and outcome in hepatocellular carcinoma. N Engl J Med. 2008;359:1995-2004.
- **13.** Kurokawa Y, Matoba R, Takemasa I, et al. Molecularbased prediction of early recurrence in hepatocellular carcinoma. J Hepatol. 2004;41:284–91.
- 14. Schrader J, Gordon-Walker TT, Aucott RL, et al. Matrix stiffness modulates proliferation, chemotherapeutic response, and dormancy in hepatocellular carcinoma cells. Hepatology. 2011;53:1192–205.
- Utsunomiya T, Shimada M, Imura S, Morine Y, Ikemoto T, Mori M. Molecular signatures of noncancerous liver tissue can predict the risk for late recurrence of hepatocellular carcinoma. J Gastroenterol. 2010;45:146–52.
- **16.** Kuang DM, Zhao Q, Wu Y, et al. Peritumoral neutrophils link inflammatory response to disease progression by fostering angiogenesis in hepatocellular carcinoma. J Hepatol. 2011;54:948–55.
- 17. Zhang JP, Yan J, Xu J, et al. Increased intratumoral IL-17-producing cells correlate with poor survival in hepatocellular carcinoma patients. J Hepatol. 2009;50: 980–9.

- Zhu AX, Duda DG, Sahani DV, Jain RK. HCC and angiogenesis: possible targets and future directions. Nat Rev Clin Oncol. 2011;8:292–301.
- **19.** Capece D, Fischietti M, Verzella D, et al. The inflammatory microenvironment in hepatocellular carcinoma: a pivotal role for tumor-associated macrophages. Biomed Res Int. 2013;2013:187204.
- Pancoska P, Carr BI, Branch RA. Network-based analysis of survival for unresectable hepatocellular carcinoma. Semin Oncol. 2010;37:170–81.
- 21. Pancoska P, Lu SN, Carr BI. Phenotypic categorization and profiles of small and large hepatocellular carcinomas. J Gastrointest Dig Syst. 2013;Suppl:12.
- 22. Diestel R. *Graph theory*. 4th ed. New York: Springer; 2010.
- 23. Dvorchik I, Demetris AJ, Geller DA, et al. Prognostic models in hepatocellular carcinoma (HCC) and statistical methodologies behind them. Curr Pharmaceut Design. 2007;13:1527-32.
- 24. Cao W, Li J, Hu C, et al. Symptom clusters and symptom interference of HCC patients undergoing TACE: a cross-sectional study in China. Support Care Cancer. 2013;21:475–83.
- 25. Liu SY, Zhang RL, Kang H, Fan ZJ, Du Z. Human liver tissue metabolic profiling research on hepatitis B virus-related hepatocellular carcinoma. World J Gastroenterol. 2013;19:3423–32.
- 26. Taleb I, Thiefin G, Gobinet C, et al. Diagnosis of hepatocellular carcinoma in cirrhotic patients: a proof-of-concept study using serum micro-Raman spectroscopy. Analyst. 2013;138:4006–14.
- 27. Virmani J, Kumar V, Kalra N, Khandelwal N. A comparative study of computer-aided classification systems for focal hepatic lesions from B-mode ultrasound. J Med Engineer Technol. 2013;37:292–306.
- 28. Zhang X, Thiefin G, Gobinet C, et al. Profiling serologic biomarkers in cirrhotic patients via high-throughput Fourier transform infrared spectroscopy: toward a new diagnostic tool of hepatocellular carcinoma. Transl Res. 2013;162:279–86.
- 29. Chiu HC, Ho TW, Lee KT, Chen HY, Ho WH. Mortality predicted accuracy for hepatocellular carcinoma patients with hepatic resection using artificial neural network. Sci World J. 2013;2013:201976.
- **30.** Ying X, Han SX, Wang JL, et al. Serum peptidome patterns of hepatocellular carcinoma based on magnetic bead separation and mass spectrometry analysis. Diagn Pathol. 2013;8:130.
- **31.** Zhang M, Yin F, Chen B, et al. Mortality risk after liver transplantation in hepatocellular carcinoma recipients: a nonlinear predictive model. Surgery. 2012;151: 889–97.
- 32. Shi HY, Lee KT, Lee HH, et al. Comparison of artificial neural network and logistic regression models for predicting in-hospital mortality after primary liver cancer surgery. PloS One. 2012;7:e35781.