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T
he idea that tumors grow in part due to the

influence of their environment is not new.1

We understand tumor clinical environment
to be any aspect of the milieu in which a tumor

arises, that can potentially influence its behavior.

Thus, age2,3 and gender4 can influence the hormonal
milieu of the liver. We regard such clinical factors as

macro-environmental. The altered liver function that

is part of the changed cytokine and inflammatory
marker cascade resulting from alcoholism or
- see front matter
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hepatitis and that is reflected in blood bilirubin,

albumin, INR, or ALT/AST levels, we consider to be

clinically micro-environmental.5,6 Both the processes
of hepatocarcinogenesis and growth of hepatocellu-

lar carcinoma (HCC) involve a two-way influence of

the effects of hepatitis viruses, alcohol or carcino-
genic mycotoxins on the liver, as well as the reaction

of liver components to these chronic and damaging

agents. At the level of tissue organization, there are
changes in extra cellular matrix components, as well

as angiogenesis and chronic inflammation, that are

both consequent on the damage and then become
necessary components of the developing tumor

environment. Some of the biochemical processes

have been identified to include oxidative stress,
apoptosis, autophagy, and the immune system.7–9

The tumor stroma and micro-environment both have

been shown to have characteristic and prognostic
molecular signatures,10–15 but their components also

are seen to be an attractive target for the new

molecularly designed therapies.8,9,10 Some of the
cell types that are involved, and their products, are

now becoming identified.16–19 The effects of clinical
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environment (macro and micro) on tumor biology

are not simple, nor are the studies and questions and
tools for finding answers. At the same time, novel

experimental methods bringing detailed insights

about the micro-environmental contributions to
disease mechanisms are increasingly powerful.

A methodology is needed for finding the optimal

intersection of the clinical and molecular directions
in tumor-environment research and its clinical

interpretation and application. Ideally, tumor-envi-

ronment models and their diagnostic and prognostic
results should use these two information resources

simultaneously, in the full mutual context. In this

article, we open a clinical direction towards this
unification with an approach prepared for incorpo-

rating both avenues. Our motivation is that if the

standard clinical characterization of the patient in
terms of our understanding of micro- and macro-

environmental clinical factors and the disease status

can bring new insights. This would allow direct
integration of the results of novel experimental and

molecular biology studies with clinical practice data

and thus improve the “bedside translation”. We
suggest and demonstrate here that with better

characterization of the clinical disease heterogeneity,

it is more likely that relevant hypotheses can be
formulated and tested through complex studies with

better design and patient status identification.

We present several novel results. First, we vali-
dated the Network Phenotyping Strategy (NPS)-

based classification model,20 developed by us pre-

viously for recognition of HCC subtypes using the
extensive screening data on 4,139 subjects.21 We

applied this model without change, to independ-

ently collected data from another continent, and
confirmed that the same HCC subtypes and the

characteristic patterns of relationships were also

identified. Since we had survival data for this new
data set (which was not available in the previous

study), we next showed that the identified HCC

subtypes have significantly different survival and
thus prognosis. With this additional validation, we

then analyzed the clinical and relationship pattern-

based characteristics of the identified HCC subtypes
and provided their interpretation in terms of the

tumor–clinical environmental interactions.
METHODS

We approached the extraction of novel informa-
tion from a standard set of baseline clinical param-

eter data at diagnosis, used in routine clinical

practice clinic for HCC evaluation, in a way that
allows us to better characterize HCC clinical hetero-

geneity. We have previously demonstrated that this

can be done by application of graph theory tools.
Mathematical graphs, when properly selected, can
capture what at first sight are complicated relation-

ship patterns, in an elegant and, most importantly, in
a manageable and clinically understandable way. We

call this new graph-based approach the Network

Phenotyping Strategy (NPS).20,21 NPS transformation
of clinical practice data enabled us to adopt a new

paradigm in which we examined the levels of

individual typical parameters used in standard base-
line evaluation and clinical categorization of HCC

within the context of all the other identified clinical

parameters.
In the concrete application of this general

approach to problems of HCC, the changed para-

digm allowed us to use common clinical blood test
parameters together with demographic descriptors,

and gain novel information from analyzing the

relationship patterns by considering their values
and levels simultaneously. This novel paradigm is a

mathematical incarnation of the common clinical

question of the following type: a single 8-cm HCC
mass in an apparently normal liver carries a quite

different prognosis and treatment approach from a

similar 8-cm mass in the presence of multiple
cirrhotic nodules, elevated bilirubin, and/or ascites.

We considered how to take all these important inter-

relationships simultaneously into account and under-
stand their impact on the prognosis or treatment of a

concrete patient. We demonstrate here that NPS

transformation of the data enables not only high-
level analysis of information in the relationship

patterns between all used clinical variables, but it

also provides results in a form that is directly and
simply interpretable in clinical terms.

Our NPS approach uses the clinical study and/or

clinical practice data and with the consideration of
all available clinical information that is relevant for

the disease. This pre-processing of the data allows us

to encode the standard clinical information in a
consistent manner for very diverse data types as

the partitions and vertices of a network graph,

which in turn represent complete relationship pat-
terns between the clinical data levels and types.

Once this is done, it is trivial to represent a personal

relationship pattern for every patient, since we
generate a k-partite graph in which the actual

clinical variable levels, found through the baseline

diagnostic tests and data collection for an individual
patient, are represented by separate vertices in

the respective partitions. These actual levels are

then connected by edges (lines), representing all
co-occurrences of these levels in the concrete per-

sonal clinical profile.

The advantage of this approach is the simplicity of
the next step, in which we capture the relationship

pattern information from an entire cohort into a

“study graph”. The study graph is simply a union
(generated by addition of all personal clinical profile
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relationship networks) of all personal k-partite

graphs. In the study graph, the numbers of
co-occurrence edges between respective levels of

clinical variables carry information about the fre-

quencies of the relationship. In the next step, with
the use of graph theory mathematics, we then found

the complete decomposition of the study graph into

the linear combination of reference relationships
patterns (RRP). These RRPs represent unique clinical

profiles, which characterize the typical collective

relationships between all considered variables,
occurring frequently and with clinical significance

in the original data. The RRPs were then used as

“landmarks” in the disease clinical profile landscape,
relative to which we measured an individual

patient’s clinical profiles.
To that effect, in the last NPS step, we extracted

the personalized information for characterization of

an individual patient’s relationship pattern using the

“closeness” between an individual’s clinical pattern
and all those RRPs, characterizing the HCC type

heterogeneity. This closeness was computed as a

vector of graph–graph distances between a personal
relationship profile of an individual patient and all

respective RRPs. With this definition, the graph

distance has simple and clear clinical interpretation,
namely, it is the total number of mismatches

between the individual patient and the reference

relationship profiles. The number of mismatches
from one RRP defines one element of the personal

distance vector. We found in the previous study that

nine RRPs are necessary for characterization of HCC
tumor phenotypes, which we validated here using a

different dataset.

The NPS transformation of the HCC patient base-
line variables thus constitutes a nine-element vector

with element 1 indicating how a patient actual

relationship profile is different from RRP1 and ele-
ment 2 indicating how a patient actual relationship

profile is different from RRP2 etc. In this way,

through the NPS transformation, the original “raw”
clinical data are transformed into a simple numerical

form that unifies encoding of variable levels with the

actual pattern of the variable level relationships in
every individual patient’s clinical profile. Figure 1

shows an example of how parameter change

impacts the relationship pattern. The lines (graph
edges) are relationships found in one of the HCC-

specific RRPs. While this RRP considers platelets

with levels higher than 195 x 109/L, a concrete
patient had platelets level lower than this threshold

with all remaining variable levels identical to the

RRP. This single parameter level difference between
individual and reference clinical profiles (7%) caused

a change in nine of 45 (20%) relationships captured

by NPS transformation of the HCC screening data
(see Figure 1).
Clinical Data Collection

The baseline clinical presentation data of 641 US

patients presenting for treatment of biopsy-proven

unresectable HCC in an unscreened population was
examined. On initial clinical evaluation, all patients

had: baseline complete blood count, blood liver

function tests, blood alpha fetoprotein (AFP) levels,
and hepatitis serology, as well as physical examina-

tion, liver and tumor biopsy, and a triphasic helical

computed axial tomography (CAT scan) scan of the
chest, abdomen, and pelvis. The data and CAT

descriptors were prospectively recorded and

entered into an HCC database intended for follow-
up and analysis. This analysis was done under a

university institutional review board–approved pro-

tocol for the retrospective analysis of de-identified
HCC patient records.
RESULTS

HCC Heterogeneity: Identification of Two
General HCC Phenotypes

We present the first independent validation of the

previously published results obtained by NPS analy-

sis of HCC screening data from another HCC cohort,
which was not part of a screening program. With

these independent clinical data, we therefore fol-

lowed without any modification all of the previously
used steps in their preparation for NPS transforma-

tion and analysis. The first step was the definition of

the partitions in the k-partite graph. That included a
data-driven approach that simplified the relationship

patterns to be analyzed.21 For this purpose, we

previously used a special algorithm of graph theory,
which found the maximal cut sub-graph in the

complete weighted graph, representing all possible

statistically significant (P o.01) correlations
between eight blood test parameters. This algorithm

is mathematically proven22 to find a single unique

set of clinical variables that are all statistically
significantly correlated and the sum of their correla-

tion coefficients is maximal of all other possible

combinations. We used this step to optimally repre-
sent by a single partition the two variables that carry

equivalent information. These uniquely correlated

pairs were: AST/ALT, AFP/platelets, albumin/hemo-
globin, and bilirubin/INR.

By repeating the identical procedure with new

data, we have shown that this unique, information-
ally optimal pairing of clinical variables was found

without change and with preserved statistical sig-

nificance of correlation coefficients also in the
cohort studied here. This validated the first design

feature of our NPS graph—that it was and is the 10-

partite graph (Figure 1), in which each partition
represented one clinical component of the analyzed



Figure 1. Ten-partite graph used in NPS transformation
of HCC screening data, which captures patterns of
complete relationships between tumor and environmen-
tal parameters. Each box represents one partition, which
in turn corresponds to one clinical variable. Note that
eight blood parameters are represented in four pairs,
each comprised of two significantly correlated clinical
variables. Circles (graph vertices) represent the statuses
of categorical variables (þ indicates present; -, absent; F,
female; M, male; O, older than 55 years; Y, younger than
55 years) or levels of blood parameter pairs components
(L indicates both parameter levels are from the two low
terciles in the original study; H, one of both levels in the
pair are from the upper terciles in the original study21).
Solid lines (graph edges) show the unique information
processed by NPS; they represent the complex pattern of
relationships between all variable levels for a patient. This
relationship pattern represents females, older than 55
years, with self-reported alcoholism, hepatitis B– and
hepatitis C–positive, AST o4 IU/L and ALT o3.23 IU/L,
albumin 44.0 g/dL and/or hemoglobin 414.9 g/dL,
bilirubin 41.5 mg/dL and/or INR477, platelets o195
x 103/dL and AFP o29,000 ng/dL, PVT-negative. Red
lines show by example that any single parameter (here
platelet/AFP levels) contributes to nine relationships in
the complete pattern. By the dotted lines (green) we
demonstrate how a single-parameter change (eg, plate-
let or AFP are high) results in the more informative
change of the nine components of the original relation-
ship pattern. Because the results of the NPS data trans-
formation are independent of the variable ordering in the
10-partite graph, we grouped the macro-, micro-envir-
onmental, and tumor factors into adjacent sections
as shown.
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information. In addition to the four blood test pairs

identified above, the remaining six graph partitions
represented age, gender, alcoholism, hepatitis, and

portal vein thrombosis (PVT) statuses.

The next step of the clinical definition of the 10-
partite graph needed for the NPS transformation of

HCC screening data was defining the thresholds,

allowing us to discretize the ranges of real valued
clinical variables into low and high categories. In the
previous publications, we used a tercile approach to

find these thresholds.21 Low category represented
two terciles of original cohort patients, all having

both levels lower than the given threshold, high

category represented the upper tercile of patients
with at least one variable level above the threshold.

With the new data we found that all of the thresh-

olds from our previous study also subdivided the US
cohort into the terciles. This was evidence that the

distributions of the collected clinical variables were

equivalent in the two data sets and consequently
that the parameters we selected for discretization of

the clinical information in our NPS analysis are

justified and independently valid in both cohorts.
With validated thresholds, the high and low levels of

clinical variables were then represented by the

vertices in the respective partitions (Figure 1). We
then used the actual data for every individual from

the validation cohort and constructed personal 10-

partite graphs, representing the complete patterns of
relationships between a patient’s clinical profile

levels.

In the current validation set, with substantially
fewer patients compared to the training set, we

implemented the stringent validation approach, con-

firming the RRPs that we found by a special graph
theory algorithm, which decomposed the training

study graph, representing union of 4,139 individual

relationship patterns into a linear combination of
RRPs are valid landmarks in the HCC clinical land-

scape of the validation cohort. The similarity and dis-

similarity of a patient’s individual clinical profile was
defined by the number of personal screening data

relationships identical to or different from the

respective RRPs. The total number of these differ-
ences for each of nine RRPs, defined (through the

nine-variable logistic regression model) the odds that

a given individual patient’s clinical screening profile
represents an S-tumor or L-tumor HCC subtype.21

We therefore directly used the RRPs from the

training set, generated the input of individual graph-
RRP distance vectors with nine components for

patients from the validation set. These were used

as input into the S and L classification logistic
regression equation, optimized in the training set.

We used the computed odds to recognize two

subgroups of the patients with predicted small
(S) and large (L) tumor masses. With this strategy,

the patients from the validation set were classified

into HCC subtypes S and L directly by their relation-
ship patterns derived from personal screening data.

This was done independently of the information

about the actual tumor masses. We found that
80.6% patients fell into the L group and 19.4%

patients into the S subgroup. We then finalized the

validation by comparing the distributions of the
actual tumor masses in the S and L identified patient



Figure 2. Boxplots representing distributions of the (A) tumor masses (logarithm of maximal tumor size in cm x number
of nodules) and (B) overall survivals (logarithm of survival in days) for the patients, classified by the previously developed
nine-variable logistic regression model, computing odds for S (red) and L (blue) from the distances of patients’ personal
relationship profile graphs from graphs of RRPs. Box notches indicate distribution means.
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subgroups (Figure 2A). The two means of tumor

mass distributions were 22 [cm.n] for L and 9 [cm.n]
for S patients. These means of tumor mass distribu-

tions in the two categories were significantly statisti-

cally different (P o10-14).
In addition, since we had survival data for this set

that was not available for the training dataset, we did

additional independent validation of clinical rele-
vance of the NPS-recognized S and L subgroups of

HCC patients. We found (Figure 2B) that there was

significantly different survival between the two
groups, S and L. The mean survival in the L subgroup

was 7 months and that in the S subgroup was 12

months. This 1.7-fold difference in means of the
survival distributions was again strongly statistically

significant, P o 10-5.
Influence of a Single Clinical Environmental
Parameter Change on Phenotypes

With the above results validating the NPS results

and identifying HCC subtypes in terms of the clinical

tumor biology and disease outcome characteristics
(prognosis), we gained more detailed insight into the

HCC heterogeneity, its factors, and the role of the

clinical environment interaction with the tumor by
probing the clinically relevant details of the NPS

classification model. The actual patient allocations

into S or L HCC subtypes and the survival prognosis
were derived by the nine-variable logistic regression

model, which processed differences between the

patients’ relationship profiles and respective RRPs.
Our previous NPS analysis of the tumor and clinical

environment interaction had shown that the HCC

clinical landscape is separated into two main
regions. One was S, with smaller tumors having

more variable relationship patterns of clinical param-

eters, and the other was L, with more stringent
clinical parameter relationship characteristics. In
addition to this basic differentiation, our analysis

provides further differentiation of these two subca-
tegories, which is defined by the clinical landmark

statuses of two classes of the nine RRPs. There are

four RRPs, which are located in the S-tumor region
(Table 1A) and five RRPs (Table 1B) associated with

L tumors. Here “location” or “association” of RRP

with a particular clinical state of RRPs is understood
as the data-driven feature of the patient’s clinical

data, revealed by the pattern-based information

processing we introduced through NPS. The actual
clinical profiles of HCC patients are unevenly dis-

tributed for subjects with typically S or L data

patterns. In addition to the primary S/L division,
there are additional heterogeneities in patient clin-

ical data relationship patterns within these two main

subcategories and RRPs represent the “focal points”
of them. This role of RRPs, as validated here to be

well-defined and characteristic descriptors of the

tumor and clinical environment, allows us to obtain
further insight by detailed analysis of the response to

single parameter changes, into the NPS-derived sub-

type assignment of S or L.
The advantage (see Figure 1) of this novel pattern-

based NPS analysis paradigm is that single parameter

changes induce extensive variation of the original
relationship pattern, which brings a new level of

clinical information and can be traced to the func-

tional aspects of the environment–tumor interac-
tions. Full results of this analysis are summarized in

Table 1. We next give two representative examples

demonstrating how we arrived at the main result of
this analysis, namely, that there are three basic types

of clinical consequences of these variations in

patient tumor phenotype subgroup and hence in
prognosis.

In a first example, the first panel of Table 1A

defines the S1 subtype of the S-tumor phenotype.
The clinical meaning of the RRP, that is, the clinical



Table 1. Results of Systematic Analysis of Single-Parameter Change in S and L-Tumor Associated
Reference Relationship Patterns on the Odds Used to Diagnose S or L HCC Phenotype

NOTE. In all panels, orange highlights the forbidden parameter changes, green highlights the changes that improve and white
reduces, but not changing the odds for respective phenotypes after the parameter change (top row), all relatively to reference
relationship patterns (top row). See text for details. Please see journal website for color Table.
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pattern serving as a focus for the cluster of patients

with this HCC subtype, is found in the first (“from”)
column of the S1 sub-table. This is a male patient,
older than 55 years, with no self-reported alcohol-

ism, hepatitis B antigen–positive, hepatitis C anti-

gen–negative, AST o4 IU/L and ALT o 3.23 IU/L,
albumin o4.0 g/dL, hemoglobin o14.9 g/dL, biliru-

bin o1.5 mg/dL, INR o77 , platelets o195 x 103/

dL, and AFP o29,000 ng/dL, PVT-negative. The
“reference” column of the panel indicates that for a

patient whose actual clinical profile would be

exactly identical with this S1 RRP, the odds for
diagnosis of HCC tumor types are 58.3% for S and

41.7% for L, respectively (top, Reference row). This

parameter pattern defines the association of S1 with
S-tumor phenotype.

The second column (“to”) identifies a single

clinical parameter state change from the original S1
level to the level indicated in this column, which we

tested. Note that all remaining nine parameters were

kept at their original levels in the S1 RRP. In the last
two columns we reported the odds for L and S tumor

subtypes, as they are computed after the tested

clinical variable level change. This process was
repeated systematically and independently for all

10 single clinical variable level changes (these results

are shown in the variable-labeled rows, below the
Reference row of Table 1). Three types of response

of the HCC classification to any single parameter

change were found. We explain these three catego-
ries below and show them in graphical representa-

tion in Figure 3.

The first category is highlighted in green
(Figure 3A). These are changes that strengthen the
identification of the S tumor relative to the clinical

pattern status identical to the RRP S1. For patients

similar to S1 subtype of S tumor and in the order of
improving the odds of an S diagnosis, these changes

are (1) either increase hemoglobin level above 14.9

g/dL, or increase of albumin level above 4.0 g/dL or
having both these levels high; (2) hepatitis C antigen

changing from negative to positive; (3) individual

changes from male to female, from patient older
than 55 years to younger and levels of bilirubin and

INR from levels lower than the above presented

thresholds to levels higher in either of them or both,
also increase the S-diagnosis odds in comparable

manner. Thus, both macro- and micro-

environmental changes in a single parameter change
the odds of such a patient being in the S or L

phenotype.

The second category of odds responses to a single
parameter change were left white in Table 1A

(Figure 3B). If, in contrast to the original relationship

pattern in S1, patient reports alcoholism or hepatitis
B is not diagnosed, that decreases the odds but still

identifies a patient as having an S-tumor subtype.

The third category was highlighted in orange in
Table 1A (Figure 3C). These are changes, which we

interpret as forbidden, because they change the

reference relationship pattern S1 in the HCC clinical
landscape populated by actual personal clinical

relationship patterns characteristic to S tumor in

such a way that the distances from this altered RRP
are suddenly wrongly described by higher odds for

the L-tumor subtype. These three “forbidden” single
parameter changes (from absence to presence of
PVT, the AST/ALT inflammation markers and



Figure 3. Three types of response of the S1 RRP to the single parameter change. (A) Pattern relationships that responded
to change by improving S-type diagnosis (green relationship edges); (B) pattern relationship that responded to change by
moderately reducing the odds for S-type diagnosis (red relationship edge); (C) pattern relationships that are forbidden
(see text for explanation; black relationship edges); (D) complete picture of all tree relationship types in the complete
relationship pattern S1. Please see journal website for color Figure.
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platelet/AFP markers increasing from low to high

levels) thus have to stay in the original S1 RRP-

defined levels. This category of single parameter
changes therefore represents a relationship subpat-

tern, which is the most characteristic for the S1
subtype of S tumor.

In Figure 3D we integrated these responses of

the S1-tumor subtype prognosis changes into a

complete scheme and also added relationships that
go beyond the single-parameter ones to pairwise and

higher order ones (this is possible because of

additive terms in logistic regression equation com-
puting the odds).

A second example of the influence of a single

parameter change is from the third panel in
Table 1A, showing properties of the S3 subtype of
S tumors. For this S-tumor subtype, there are only

two characteristic parameters that are forbidden

(from absence to presence of PVT and platelet/AFP
markers changing from low to high, shown in red).

Only a change of reported alcoholism to no alcohol-

ism increases the S-tumor odds relatively to original
S3-pattern result. All remaining allowed changes

decreased the S-tumor odds, with the micro-

environmental inflammatory marker AST/ALT
change from low to high and albumin/hemoglobin

change from high to low having the largest impact.

Note that absence of PVT is a common non-variable
and therefore the most characteristic feature of S

tumors (this emerged directly from the data relation-

ship analysis). The low platelet/AFP levels are
required for three of four S-tumor subtypes.
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Results of the systematic single parameter level

variations for the five L-tumor subtypes (Table 1B)
can be summarized as follows: the 10-variable rela-

tionship patterns associate with these more aggres-

sive and worst survival prognosis tumors are very
characteristic, resulting in a very clear diagnosis (all

reference odds are close to 90% and higher). With

such very structured relationship patterns (out of
many and many theoretically possible) that we

identified in our NPS analysis, single parameter

changes do not induce significant changes in the
L-tumor characterization. Thus, in contrast to S

tumors, L tumors are not amenable to subtype

change as a result of single parameter changes.
DISCUSSION

It has been long recognized in HCC studies that

unlike many other tumors, prognosis depends upon

both tumor and micro-environment factors (liver
inflammation), as well as macro-environmental fac-

tors such as age and gender. In order to discuss these

combinations of various factors, a variety of
approaches have been taken,23 such as multivariable

regression, principal component analysis,24–28 or

neural networks.27,29–32 Regression methods
become too complicated for considering complete

tumor–environment interactions; and the principal

component and neural network analyses provide
statistically significant associations for diagnosis and

prognosis, which are difficult to interpret in simple

clinical terms.
The motivation of our approach was to concen-

trate on tumor–environment interactions by

(1) designing an NPS to characterize these interac-
tions using the correct number of RRPs, and

(2) extracting the diagnostic and prognostic infor-

mation individually and quantitatively by comparing
personal patterns of these interactions for individual

patients to reference relationship patterns that have

clear clinical interpretation. This approach was
developed on a previous cohort showing that the

HCC patients in that cohort could be described

within two broad phenotypes, S and L, which
differed significantly with respect to tumor mass.

The significance of these two HCC phenotypes was

validated here in two ways. First, without any
change of the NPS model, the means of tumor mass

distributions in this cohort were different with

significance P o10-14. Second, the clinical impor-
tance of this is that overall survival was also signifi-

cantly different between the two groups P o10-5.

This significance of the two phenotypes for disease
outcome allowed us to begin to interpret the results

in more details.

Within these two phenotypes, we recognized four
patterns within S and five patterns within L
phenotype. Each phenotypic pattern comprised

unique combination of relationship between the
levels of 10 clinical parameters, which in turn

represent different interactions between the tumor

and environment factors. The NPS results showed
that patient relationship patterns are unevenly dis-

tributed in the tumor–environment landscape with

RRPs’ landmarks, such that there are patients who,
by the nature of the complete relationship between

their tumor and clinical environment interactions,

are related to one, but distant to most or all other
RRPs. It is this heterogeneity that underpins the

functionality of our approach and allows for even

more detailed testing of the clinical significance of
this result. We systematically changed individual

single parameters in each of the nine subgroups

and then we examined the clinical consequences in
terms of the resultant phenotypic assignation that

resulted from the complex change in pattern of

relationships between all of the tumor and clinical
environment parameters, consequent on that mini-

mal level change in any one of them. This computa-

tional exercise provided interesting insight into the
different nature of the two tumor phenotypes.

For each of the S-phenotype patterns we found

clinical parameters that cannot be changed from the
original reference levels defined in RRPs, together

with clinical parameters whose levels can be varied

to alternative levels. For example, presence of PVT-
positivity was invariable or inadmissible in all four S

subtypes, since its presence resulted in a relation-

ship between the tumor and environmental param-
eters that was not observed within the training nor

validation HCC patterns. By contrast, change in

micro-environmental parameters such as bilirubin
(S1, S2, and S3) or AST (S2, S3) resulted in a change

in the odds ratio within the S phenotype in some of

the four S phenotypes (Table 1A).
By contrast, the characterization of L-tumor phe-

notype did not require any invariable levels of any

clinical parameter. It is solely the unique relationship
patterns between majority of the clinical parameters,

captured by the unique patterns L1–L5, that charac-
terize the L phenotype. This importance of tumor–
clinical environment relationship pattern is such that

change in an individual parameter had no significant

effect on the L-phenotype recognition.
The main result of our approach, by examining

micro- and macro-environmental interactions using

non-arbitrary, data- and disease-defined RRPs,
allowed us to identify the impact of the large

number of tumor-clinical environmental interac-

tions, leading to the identification of just a limited
number of patterns. Most importantly, we demon-

strated that tumor–clinical environment interaction

patters explained how the same level of an individ-
ual parameter can have a different diagnostic and/or
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prognostic meaning within a different overall con-

text. As an example, the baseline bilirubin level is
low in S1 and S4, but high in S2 and S3, yet all of them

are S-subtype patterns. By careful analysis of these

different relationship contexts, it is obvious that
there is no simple (binary) clinical association to

other parameters that would link both high and low

bilirubin levels to the same tumor phenotype. We
therefore believe that minimal meaningful clinical

information for recognizing HCC phenotypes needs

to use the complete parameter patterns and not
individual parameter levels or their simple

combinations.

Returning back to the actual reference patterns,
they also comprise previously known facts. For

example, in the L phenotype, all reference patterns

L1–L5 are PVT-positive, all platelet/AFP levels are
high, and all are alcohol self-reporting, so that the

tumor factors contributing to these phenotype land-

marks with the worst survival prognosis are the most
aggressive in the conventional clinical sense.

Another example uses the fact that it has previously

been shown the female gender macro-environmental
influence is associated with a less aggressive HCC

phenotype. This is fully compatible with our pattern-

based result for S-phenotype RRPs single-parameter
changes. In the S phenotype, only S3 incorporated

female gender and the reference odds for S

phenotype were the highest among all four S sub-
phenotypes. In the remaining S characteristic pat-

terns S1, S2, and S4, the impact of change in gender

from male to female on the complete pattern of the
tumor–clinical environment relationship pattern

resulted in increasing S odds. Thus, PVT, platelets,

and female gender seem to have an overwhelming
influence on phenotype.

If the biology underlying the levels of the assayed

screening panel of clinical parameters includes proc-
esses that are clinically relevant for the status of the

tumor microenvironment, then the change of para-

digm in how the “conventional” information is
processed will change how these apparently “sim-

ple" but extensively used information resources can

start contributing to a “higher level” tumor micro-
environment understanding. Using clinical profile

patterns, removing the obscurity from them, having

a non-statistical tool for how to take the standard
screening data and convert them (without losing the

study statistical power) into a new form of informa-

tion, where the internal tumor growth factors are
directly considered in the deterministic number of

clinically well-characterized microenvironment con-

text, provides just that necessary clinical landscape,
from which more detailed and complex tumor

microenvironment research (and its translation to

bedside) can benefit most. After validating these
insights in terms of the patient’s clinical relationship
profile distances from the RRP’s landmarks, more

detailed analysis of just that limited, but optimal
number of landmark clinical statuses, around which

patients with a given HCC subtypes are clustered, is

possible. We can then, instead of reporting on the
significance of age or gender or alcoholism, inves-

tigate the different prognostic and clinical impact on

the patterns of all three of these parameters together
as contributors to tumor biology. We have done this

systematically, which has led to the identification of

specific collections of clinical states and relationship
subpatterns that characterize individual sub-states of

HCC and the characteristics of associated clinical

environments.
There were clinical differences between the train-

ing set and the current US set. Most patients from

the validation study cohort were not diagnosed
through screening, so that they tended to have more

advanced disease than the training set patients. This

clinical difference between the training and valida-
tion cohorts is seen in our results. Besides other

evidence, we can see it primarily in the numbers of

the recognized the S- and L-tumor subtypes. In the
training set, we found nearly balanced fractions of

patients in the L and S sub-cohorts (50.8% in L and

49.1 in S). In the current US patient validation
cohort, we have identified 80.6% patients with

L- and 19.4% with S-tumor subtypes.

At the same time, in current validation US
patients, we used the same thresholds for dichoto-

mization of blood parameter pairs into low and high

levels. In the training study, the definition of these
parameters was strictly by tumor size terciles. After

looking at the distributions of the patients with the

high and low levels of all blood test pairs, we found
that in this clinically more progressed disease

cohort, the distribution of these low and high levels

of the blood parameters are very close to tercile-
related proportions of two-thirds patients with low

parameter levels and one-third of patients with high

clinical variable levels for all four blood test
parameter pairs.

In one clinical micro-/macro-environment, a single

parameter level can have one diagnostic meaning,
while in another clinical environment the meaning

of the same parameter level is completely different.

Only by analyses such as this, which brings the
blood test levels into the proper context of the data-

captured clinical environment interactions, we can

properly interpret all of these levels, This in turn is
one of the main reasons behind the ability of this

approach to identify S and L HCC tumor subtypes.
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