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MATHEMATICAL BACKGROUND OF 
PERSONALIZED NETWORK MEDICINE 

PNM replaces the analysis of data values 
by the analysis of relationship patterns 
between these data values. The use of 
graphs results in a compact 
representation of these relationship 
patterns, which would become 
prohibitively complicated if we would 
attempt to quantitatively capture the same 
information in another way (imagine, for 
example, statistical models where all 
independent variables are covariates). 
Nevertheless, the use of graphs for 
capturing the high-level data relationship 
information still does not solve the 
problem how to simplify the processing of 
very complicated input. Even in small 
space of relationships between just 5 
variables, we found that 2631 patients 
were characterized by 166 different 
clinical profiles PRPi. Out of those, 117 
(70.5% majority) were found for just five or 
less patients and, in other extreme, the 
two most common personal clinical 
profiles were shared only by 197 and 217 
patients, respectively. From this 
perspective, despite of compact 
mathematical form of network-captured 
relationship information, most individuals 
in the study appeared as “outliers”, 
because of the inherent complexity of the 
unprocessed relationship pattern data.  

Therefore, additional mathematical step is 
needed before meaningful data analysis 
and interpretation of the higher-level 
information, encoded in the data 
relationship patterns, is possible. The 
conceptual background for this additional 
step, which defines the PNM, is simple: 
we take into consideration that 
relationships between data in clinical 
studies are generally not random, but 
structured. For example, in concrete 
application, the probability that a person 

from a family with cleft history will have lip 
whorl is higher than random chance of 
such relationship. These “transition 
probabilities” between the clinical variable 
values and phenotype were (or might 
have been) established as “associations” 
by separate studies, but we need to 
integrate them into the full context of other 
personal descriptors of an individual. 
Conceptually, this equals to fundamental 
paradigm change. Instead of looking for 
biases in data values, capturing i.i.d. 
responses of subject systems to 
phenotype condition(s), we want to 
decode information, underlying the non-
trivial, function-related relationships 
between the observed data values, while 
all other “parasitic”, non-informative 
relationships are considered in maximally 
unbiased way. With this adjustment of the 
analysis goals, the measured variable 
values represent the signals, and 
observed co-occurrence frequencies are 
transition probabilities between states, 
generating these signals. Formalism of 
information entropy characterization of the 
study data and relationships between their 
values, considered as the information 
source, where the personal context of an 
individual modulates the observed 
phenotype-related signals, is the natural 
choice for solving this problem. Next 
paragraphs summarize the essentials of 
the formal integration of various 
fundamental mathematical results, leading 
to the PNM implementation.  

Graph is defined as the specific set of 
vertices, edges (connections between 
vertex pairs) and the topology (set of 
prescriptions how the vertices are 
connected by edges. Topology of a graph 
with n vertices can be captured by nxn 
adjacency matrix). 

For our purposes, we need to generalize 
this graph definition and simultaneously 
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put restriction on its topology: a) we define 
study graph S as k-partite graph with b) 
vertices carrying additionally the vertex 
potentials and c) the relationship 
information, carried by  edges is extended 
by edge weights (see below for definition 
of this double-weighting).  

Definition of vertices and vertex 
potentials: To every observed clinical 
variable, we assign a set of v vertices. 
Each of this vertex v-tuple will carry a 
potential function value, representing the 
clinically relevant variable value or type. 
Thus, for gender we will have v = 2 with 
the potential function values V1 = male, V2 

= female. For blood bilirubin variable, we 
might have v = 3, with V1=<0-2 mg/dL = 
normal, V2 = 2-5 mg/dL = elevated, and V3 

= >5 mg/dL = high, or other definition of 
the ranges, as used in the best clinical 
practice for a given phenotype. While it is 
generally true that some information is lost 
by discretization of continuous variables, 
in PNM we have two mechanisms how to 
compensate for that “loss”. First, by strict 
adherence to the best clinical practices for 
clinical interpretation of individual variable 
levels, we encode into the vertex 
potentials the same information that is 
used in medicine. Second, PNM adds to 
these discretized values the information 
about their relationships, which more than 
compensate for the minimal information 
loss introduced by the expert-guided 
discretization.     

Definition of edges and edge weights: 
Edge in S indicates, that a co-occurrence 
of specific values of a variable pair was 
observed in a study. Edge weight is 
defined as co-occurrence frequency for 
every variable level pair. With this 
definition, the edge weigts are the 
estimates of the transition probabilities 
between the variable states. 

Restriction to k-partite topology of S is 
the direct consequence of the above 
definitions:  Edges represents primarily 
the observed relationships between the 
clinical variable observations for a person. 
Thus, if we consider person’s weight, the 
subject cannot be simultaneously obese 
and underweight. Therefore, in clinical 
data, we will never study the value of a 
variable within the context of another 
value of the same variable for the same 
person. Therefore there will never be 
edges between vertices representing the 
observable ranges of the same variable, 
which by definition lead to k-partite graph 
S.  

With the above definition of graph S, the 
relationship patterns, experimentally 
observed in the study data are 
represented as (clinical variable) states 
and transition probabilities. Now the 
question is, if any internal structure in 
such data relationship set exists, which 
would provide a natural simplification of its 
complexity. There is unique answer to this 
question, which can be found by analysis 
of information entropy H. The fact, that H 
= -piln(pi)  reflects very fundamental 
inherent property of any system with the 
structured information: in such a system, 
there are many relationship structures that 
contribute identically to the total 
information entropy.  

The logarithmic measure -piln(pi) is unique 
function that assigns correctly the identical 
fraction of entropy to all those equivalent 
information structures (see the 
explanatory scheme on the next page). 
This uniqueness makes the entropy 
function the only available tool for 
quantitative labeling of all equivalent 
relationship patterns, which we want to 
analyze. In our example, if we could 
assign entropy to all 166 types of clinical 
profiles PRPi found in the study, those 
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with identical H are carrying equivalent 
information about the patients, could be 
grouped into one clinically equivalent 
class, and the desired simplification of the 
information structure would be achieved.    

General solution of the entropy 
characterization of the information, 
captured by the relationship graphs can 
be found by applying the maximal entropy 
principle to graph sets. The solution is 
defined by the following theorem: Let G be 
a finite set of graphs with elements PRPi. 

Distinguish an element     of G. Define 

(PRPi,    ) as a distance metric on G. 

Define  (    ) as probability of finding 
     in G. The probability distribution that 
maximizes the entropy H(p), subject to 
constraints that   

∑  (        )
      

 (    )    

satisfies  

 (    )   (     ) 
   (        ), 

where  

 (     )
  
 ∑     (        )

      
 

and     is the unique solution to  

    (     )

  
  . 

In short, for structured clinical information, 
captured by our graphs, the solution of the 
problem of finding the correct (simplest) 
internal information structure requires 

quantitative measure  (        ) of 

graph–graph distances relatively to    .  

From condition that both      and     are 

elements of G and by defining      as k-
partite graph, it follows, that     is also k-

partite graph. Choice of   (        ) is 

restricted only by the conditions imposed 
on the set metrics (positive definiteness, 
transitiveness and triangular inequality). 

Our choice of  (        ) as edit 

distance of      and     was guided by 

several advantages, listed below. We are 
investigating properties of other definitions 

of  (        ) which are more suitable 

for other specialized applications. 

Edit distance was introduced by Hamming  
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in the context of error correcting codes. It 
is defined as the number of edge 
discrepancies between      and    . It 

can be shown, that for a graph with m 
vertices, the geometric representation of 
its edit distance from another graph is an 

  (
 
 
)  dimensional hypercube. For our 

purposes, important property of this 
representation is the symmetry of the 
hypercube, from which it follows that  

 (     )
  

, (which is the graph theoretical 

equivalent of the ensemble partition 
function of statistical thermodynamics) is 
independent of    . This fundamental 

result has two consequences. First, it 
nullifies all (uniformed) critics of PNM, 
who try to imply, that its result are 
arbitrary, because of liberty in choosing 
   . Second, because of this symmetry, 

the analytical solution of the entropy 
maximization equations can be derived 
(#). The analytical form of the graph set 

partition function  (     )
  

 is 

∑     (        )      
 ∑ (

 
 
)      

    

(     )   (     )
  

 

The analytical formula for the Lagrange 
multiplier  , maximizing the entropy H(p) 
is obtained by differentiation of the above 
partition function: 

  
(  )  ∑  (        )

 
   

  (  )  ∑  (        )
 
   

 

With these results, we can finally derive 
the analytical form of the probability 

distribution of the  (        ) edit 

distance values 0,1,…,x,x+1,…,k-1,k  

 (   )  (
 
 
) (     )       

Plots of these functions are shown in 
Figs. A1 and A2. 

Fig. A3 summarizes these results and 
provide the blueprint of the understanding 
of PNM processed information and the 
roadmap for the implementation in the 
concrete applications. The mean values of 
distribution of the observed personal 
distances  〈        〉, computed for the 

cohort or various sub-cohorts (the x-axis 

Figure A2. Plot of the probability 

distributions 𝑝(𝛿  𝑥)  

(
𝑟
𝑥
) (  𝑒 𝜏) 𝑟𝑒 𝑥𝜏 for various r 

and 𝜏 

Figure A1. Plot of the graph 

partition function  𝑐(𝐻𝐿𝑗  𝜏)
  
 

 (  𝑒 𝜏)𝑟 
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in the Fig.A3) are linked by the analytical 
formulae for graph set partition function 

 (     )
  

 and Lagrange multiplier     to 

the concrete distributions of the distances 

 (        ). The extreme values of the 

personal distances lead to the probability 
distributions that are biased towards 
similarity to some (and dissimilarity to 
other) landmarks    . This is the 

mechanism extracting optimally the 
structured information for one “phenotype 
dimension”, characterized by a clinical 
status represented by a given 
heterogeneity landmark. As the 
dimensionality of the information is 
defined by the number of informative 
   ’s, we have similar relationships for all 

other    ’s.   

Dealing with multidimensionality is simple, 
because entropy (as a state function) is 
additive. This allows for probing of the 

complete phenotype space in all 
projections of the overall data into 
respective informative     dimensions. 

Use of these independent projections was 
the rationale for concrete implementation 
of this strategy through systematic testing 
of Euclidean distance distributions for all 
pairs of     ’s,. 

 

 

Figure A3. Schematic explanation of the relationship between the values of actual mean 

values of the distances 𝛿(𝑃𝑅𝑃𝑖  𝐻𝐿𝑗)  (x-axis), Lagrange multiplier 𝜏 (blue circles, y-axis), 

probability 𝑝(𝛿  𝑥) distributions and clinical heterogeneity of the studied cohort 
(different colors of the personal icons).   


