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Fisher information. 

Consider the problem of finding the best estimate of a (true) parameter 𝜗 from multiple measurements 

of experimental data, collected as elements of the data vector �⃗�. As any experiment used to collect �⃗� 

includes error, each element of �⃗�  is associated (randomly) with this experimental error. These random 

variations can be collected into an error vector ϵ⃗. Then the following equation is “inevitable” description 

of any practical data:  

                                                                                �⃗� = ϑ + ϵ⃗                                                                                    (1) 

We want to implement the best estimate of 𝜗. This is accomplished by some algorithm 𝜃(�⃗�) → 𝜗. 

Common example of such algorithm might be 𝜃(�⃗�) ≡
1

𝑁
∑ 𝑦𝑛
𝑁
𝑛=1 , with 𝑦𝑛 being the components of �⃗�. The 

general criterion for quality of the algorithm is that it generates unbiased estimate of  𝜗. Quantitatively 

that means the following (brackets 〈 〉 represent mean value):  

                                                                 〈𝜃(�⃗�) − 𝜗〉 = 0                                                                              (2) 

To compute the mean (2), we need probability density  

                                                                𝜌 ≡ 𝜌(�⃗�|𝜗)                                                                                 (3) 

which describes the likelihood of measuring 𝜗 when �⃗� fluctuations are quantitatively described by 

(probabilistic) law 𝜌. Often 𝜌 is Gaussian/normal distribution, but this is too restrictive, mostly relying on 

the conditions for central limiting theorem validity. Fisher information actually processes the information 

in the general form of the probability density function (not necessarily Gaussian), as is obtained from the 

experimental data, to do the best possible estimation of the important information, encoded in the data). 

The derivation of the closed algebraic form of the law describing 𝜌 is actually the most important 

advantage of Fisher information based data processing. 

If we assume that 𝜌 is known, we have 

〈𝜃(�⃗�) − 𝜗〉 ≡ ∫𝜌(𝜃(�⃗�) − 𝜗)𝑑�⃗� = 0 

                                                      (4) 

We can now derive the definition of Fisher information from this general requirement of optimal 

parameter estimation. Take 
𝜕

𝜕ϑ
 of the eq. (4) above (i.e. we want to know, how this condition depends 

upon changes of the estimated parameter values): 

∫
𝜕𝜌

𝜕𝜗
(𝜃(�⃗�) − 𝜗)𝑑�⃗� + ∫𝜌

𝜕(𝜃(�⃗�) − 𝜗)

𝜕𝜗
𝑑�⃗� = 

∫
𝜕𝜌

𝜕𝜗
(𝜃(�⃗�) − 𝜗)𝑑�⃗� − ∫𝜌𝑑�⃗� = 0 

                                                           (5) 

(Because 
𝜕(�̂�(�⃗⃗�)−𝜗)

𝜕𝜗
= 

𝜕�̂�(�⃗⃗�)

𝜕𝜗
−
𝜕𝜗

𝜕𝜗
= 0 − 1 , as 𝜃(�⃗�) does not explicitly depend on 𝜗). By normalization 

condition ∫𝜌 𝑑�⃗� = 1 for probability density and using 
𝜕𝜌

𝜕𝜗
=  𝜌

𝜕ln (𝜌)

𝜕𝜗
  in (5) we have: 
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∫𝜌
𝜕ln (𝜌)

𝜕𝜗
(𝜃(�⃗�) − 𝜗)𝑑�⃗� − 1 = 0  and finally 

∫𝜌
𝜕ln (𝜌)

𝜕𝜗
(𝜃(�⃗�) − 𝜗) 𝑑�⃗� = 1 

                                                              (6) 

This result can be converted into the “information uncertainty principle” equation by 

“compartmentalization of density 𝜌 into 𝜌 = √𝜌√𝜌, squaring resulting form of (6) and using Schwarz 

inequality:  

[∫√𝜌
𝜕 ln(𝜌)

𝜕𝜗
√𝜌(𝜃(�⃗�) − 𝜗)𝑑�⃗�]

2

= 1 ≤ ∫𝜌(
𝜕 ln(𝜌)

𝜕𝜗
)

2

𝑑�⃗� .∫𝜌(𝜃(�⃗�) − 𝜗)
2
𝑑�⃗� 

                                          (7) 

with result 

∫𝜌(
𝜕 ln(𝜌)

𝜕𝜗
)

2

𝑑�⃗� .∫𝜌(𝜃(�⃗�) − 𝜗)
2
𝑑�⃗� ≥ 1 

                                                       (8) 

In (8), we use 
𝜕 ln(𝜌)

𝜕𝜗
=
1

𝜌
(
𝜕𝜌

𝜕𝜗
)  

∫
𝜌

𝜌2
(
𝜕𝜌

𝜕𝜗
)
2

𝑑�⃗� .∫𝜌(𝜃(�⃗�) − 𝜗)
2
𝑑�⃗� = ∫

1

𝜌
(
𝜕𝜌

𝜕𝜗
)
2

𝑑�⃗� .∫𝜌(𝜃(�⃗�) − 𝜗)
2
𝑑�⃗� ≥ 1 

                   (9) 

In (9), the second term is the mean squared error 〈𝜀2〉 in parameter 𝜗  estimation, while the first term 

defines Fisher information IF : 

𝐼𝐹 = ∫
1

𝜌
(
𝜕𝜌

𝜕𝜗
)
2

𝑑�⃗� 

                                                                      (10) 

The meaning of IF can be best understood using its discrete form. We replace 𝜕𝜗 by the (constant) 

difference Δ𝜗 = 𝜗𝑛+1 − 𝜗𝑛 of the estimated parameter values and integration is replaced by sum over all 

states of the measured system: 

𝐼𝐹 =
1

 Δ𝜗 
∑

[𝜌(𝜗𝑛+1) − 𝜌(𝜗𝑛)]

𝜌(𝜗𝑛)

2𝑁

𝑛=1

 

                                                          (11) 

The following algebra leads to the desired transformation of eq. (11): We first multiply (11) by 1 =
𝜌(𝜗𝑛)

𝜌(𝜗𝑛)
 

and then work out the solution: 

𝐼𝐹 =
1

 Δ𝜗 
∑

𝜌(𝜗𝑛)

𝜌(𝜗𝑛)

[𝜌(𝜗𝑛+1) − 𝜌(𝜗𝑛)]

𝜌(𝜗𝑛)

2𝑁

𝑛=1

=
1

 Δ𝜗 
∑ 𝜌(𝜗𝑛) [

𝜌(𝜗𝑛 + Δ𝜗)

𝜌(𝜗𝑛)
−
𝜌(𝜗𝑛)

𝜌(𝜗𝑛)
]

2

=

𝑁

𝑛=1
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=
1

 Δ𝜗 
∑ 𝜌(𝜗𝑛) [

𝜌(𝜗𝑛 + Δ𝜗)

𝜌(𝜗𝑛)
− 1]

2𝑁

𝑛=1

 

As Δ𝜗 is selected to be small, term [
𝜌(𝜗𝑛+Δ𝜗)

𝜌(𝜗𝑛)
− 1]

2
 can be rewritten using expansion 𝑙𝑛(1 + 𝑥) = 𝑥 −

𝑥2

2
⇒ 𝑥2 = 2[𝑥 − 𝑙𝑛(1 + 𝑥)]. By setting  𝑥2 = [

𝜌(𝜗𝑛+Δ𝜗)

𝜌(𝜗𝑛)
− 1]

2
, IF can be reformulated as: 

𝐼𝐹 =
1

 Δ𝜗 
∑ 𝜌(𝜗𝑛) [2 (

𝜌(𝜗𝑛 + Δ𝜗)

𝜌(𝜗𝑛)
− 1) − 𝑙𝑛 (

𝜌(𝜗𝑛 + Δ𝜗)

𝜌(𝜗𝑛)
)]

𝑁

𝑛=1

= 

−
2

Δ𝜗
∑𝜌(𝜗𝑛)𝑙𝑛 (

𝜌(𝜗𝑛 + Δ𝜗)

𝜌(𝜗𝑛)
)

𝑁

𝑛=1

+
2

Δ𝜗
∑

𝜌(𝜗𝑛)

𝜌(𝜗𝑛)
𝜌(𝜗𝑛 + Δ𝜗)

𝑁

𝑛=1

−
2

Δ𝜗
∑𝜌(𝜗𝑛) = −

2

Δ𝜗
∑𝜌(𝜗𝑛)𝑙𝑛 (

𝜌(𝜗𝑛 + Δ𝜗)

𝜌(𝜗𝑛)
)

𝑁

𝑛=1

+ 1 − 1 =

𝑁

𝑛=1

−
2

Δ𝜗
∑𝜌(𝜗𝑛)𝑙𝑛 (

𝜌(𝜗𝑛 + Δ𝜗)

𝜌(𝜗𝑛)
)

𝑁

𝑛=1

= −
2

𝛥𝜗2
∑Δ𝜗𝜌(𝜗𝑛)𝑙𝑛 (

𝜌(𝜗𝑛 + Δ𝜗)

𝜌(𝜗𝑛)
)

𝑁

𝑛=1

 

By 𝑙𝑖𝑚 Δ𝜗 → 0 we have 

𝐼𝐹 = −
2

𝛥𝜗2
∫𝑑𝜗. 𝜌(𝜗𝑛). 𝑙𝑛 (

𝜌(𝜗𝑛 + Δ𝜗)

𝜌(𝜗𝑛)
) = −

2

𝛥𝜗2
𝐾𝐿(𝜌(𝜗𝑛), 𝜌(𝜗𝑛 + Δ𝜗)) 

                     (12) 

which is Kullback-Leibler relative entropy, describing the change of the system information when the 

system is in the status, characterized by parameter 𝜗𝑛 relatively to the system status, characterized by 

the parameter changed from that initial value to 𝜗𝑛 + Δ𝜗. 

From this relationship of the Fisher information to Kullback-Leibler relative entropy we obtained two 

important properties of the 𝐼𝐹:  

 Fisher information is entropy (with all important formal properties, such as being additive etc.) 

 Using the known proven properties of Kullback-Leibler relative entropy 𝐾𝐿, we have (because of 

minus sign of the constant before integral in eq. (12):  

𝑑𝐾𝐿

𝑑𝑡
≥ 0 ⇒  

𝑑𝐼𝐹

𝑑𝑡
≤ 0                                                                              (13) 

To complete the comparison of the Fisher entropy as a function of time with all other information 

measures, we reiterate that for Shannon entropy H: 

𝑑𝐻

𝑑𝑡
≥ 0 

                                                                                (14) 
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The relationship (12) between Fisher information and Kullback-Leibler “cross” entropy also best explains 

the “local” character of the Fisher entropy: In contrast to a global descriptor, such as Shannon entropy, 

which integrates the information over complete distribution of observed data (signals), the Fisher 

information quantifies how the information about the system’s state n changes, when the system 

transitioned into state n+1. This is quantitatively characterized by a small increment from a n-th original 

state-specific parameter value (𝜗𝑛) to a new value 𝜗𝑛+1 = (𝜗𝑛 + Δ𝜗). This has very important 

consequence for the ability to derive physically, biologically and clinically relevant laws from the Fisher 

information. As the state-characteristic parameter increase Δ𝜗 can be selected to be very small (in the 

limit allowing integration actually infinitesimally small), we can use simple relationships between the 

functional (unknown, “hidden”) and experimental (clinical) parameters, entering them into the derivation 

of the laws.  This enables estimating the “hidden” information, such as time to disease onset, computed 

from the measured parameter values, such as CT-scan determined tumor mass. While in general such 

relationships between hidden and experimental data can be very complicated, non-linear etc., in the 

Fisher information processing we deal only with the small change Δ𝜗 of the processed parameter 

variability. In this way, it is fully justified to use simple relationships between the observed and “hidden” 

parameters (generally valid recipe is using just the first terms of the Taylor expansion of this complex 

relationship, resulting in the proportionality between the variables etc.). We thus mathematically 

correctly decompose a complicated relationship into piece-wise linearized series of relationships for 

consecutive steps of the system state development and then use calculus to generalize that discrete 

representation into the final law. 

Another insight into the meaning of the Fisher information can be obtained by substitution of the 

probability density  𝜌 by the probability amplitude for function 𝜓: 

𝜌(𝜗) = 𝜓2(𝜗)                                                                                  (15) 

which provides simple logarithmic transformations between the two equivalent descriptors of the 

probability law, determining the estimate of 𝜗: 

𝑙𝑛(𝜌(𝜗)) = 2𝑙𝑛(𝜓(𝜗)) 

        and             

𝑙𝑛(𝜓(𝜗)) =
1

2
𝑙𝑛(𝜌(𝜗)) 

                                  (16) 

Substituting (15) into definition of  𝐼𝐹 we obtain: 

𝐼𝐹 = ∫
1

𝜌(𝜗)
(
𝜕𝜌(𝜗)

𝜕𝜗
)

2

𝑑�⃗� = ∫
1

𝜓2(𝜗)
(2𝜓(𝜗)

𝜕𝜓(𝜗)

𝜕𝜗
)

2

𝑑�⃗� = ∫
4𝜓2(𝜗)

𝜓2(𝜗)
(
𝜕𝜓(𝜗)

𝜕𝜗
)

2

𝑑�⃗�

= 4∫(
𝜕𝜓(𝜗)

𝜕𝜗
)

2

𝑑�⃗� 

     (17) 
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This (equivalent) form of the Fisher information shows that it is integrated gradient of the probability 

amplitude, governing the parameters 𝜗 (and thus also of the gradient of the probability density defining 

the relationship between measurements �⃗� and parameters 𝜗).  

Because of the eq. (8) 

∫
1

𝜌
(
𝜕𝜌

𝜕𝜗
)
2

𝑑�⃗� .∫𝜌(𝜃(�⃗�) − 𝜗)
2
𝑑�⃗� ≥ 1 

we derived the uncertainty relationship 𝐼𝐹 . ∫ 𝜌(𝜃(�⃗�) − 𝜗)
2
𝑑�⃗� =  𝐼𝐹 . 〈𝜀

2〉 ≥ 1 between the estimation 

error and Fisher entropy: 

𝐼𝐹 . 〈𝜀
2〉 ≥ 1                                                                            (18) 

which relates the Fisher information 𝐼𝐹 to the mean squared error 〈𝜀2〉 in parameter 𝜗  estimation. From 

this relationship, we see the condition for the minimal mean squared error 〈𝜀2〉  in the 𝜗  determination: 

〈𝜀2〉𝑚𝑖𝑛 =
1

𝐼𝐹
 

                                                                               (18) 

This identifies Fisher information as the sensitive measure of the parameter 𝜗 estimation.  

The following important properties are derived from the fact that Fisher information is indeed entropy, 

so it has all the convenient properties, enabling its application to characterizing the general, complex 

systems: 

 𝐼𝐹 is additive, thus if 𝐼𝐹
𝑛 characterizes state n of the studied system, the system Fisher information is 

𝐼𝐹 =∑𝐼𝐹
𝑛

𝑛

  

                                                                                (19) 

 For multidimensional systems, using the addictiveness of 𝐼𝐹
𝑛, the definition (17) becomes 

𝐼𝐹 = 4∫∑(∇⃗⃗⃗𝜓𝑛. ∇⃗⃗⃗𝜓𝑛)𝑑�⃗�

𝑛

 

                                                                (20) 

where �⃗� = [𝑥0, … , 𝑥𝑘] and ∇𝑘=
𝜕

𝜕𝑥𝑘
 . 

 For mixed systems, the Fisher information obeys triangular inequality, so it is important distance 

measure, characterizing differences in composition of these systems: 

𝑎𝐼𝐹(𝜓1) + 𝑏𝐼𝐹(𝜓2) ≥ 𝐼𝐹(𝑎𝜓1 + 𝑏𝜓2) 

                                                        (21) 

 

As a consequence,  
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𝐼𝐹 (∑ 𝐴𝑛𝜓𝑛
𝑁

𝑛=1
) ≤∑ 𝐴𝑛𝐼𝐹(𝜓𝑛)

𝑁

𝑛=1
 

                                                             (22) 

The following considerations of the Extreme Physical Information (EPI) principle allowed to convert the 

Fisher information into law-generating tool. The EPI approach logically reverses the understanding of the 

data measurement process: instead treating it as collecting the random output from the (physical) 

phenomenon or effect, EPI allows reverse tracking of the function-related information from output to 

input, from the data to the underlying effect. It uses knowledge of the information flow in the 

measurement process to derive the mathematical form of the physical effect that gives the output 

measurements. It assumes, though, that the effect “is out there” and the result is a mathematical 

expression, quantitatively characterizing that effect. It will not lead to formulating new effects without 

experimental evidence for their existence.  

As the analysis of algebras of complex systems indicates, the information representing the actual 

phenomena can be identified by the invariance (or symmetries) of the corresponding representations. 

This proves the active role of invariants in the deriving the physical laws. It again is a reverse of 

conventional deductive approaches, where the law is “created” by thought experiment and its relevance 

is then confirmed by showing its (required) invariances. 

This qualitative statement has simple quantitative formulation. To be able to express the EPI, the 

information functional, captured by the Fisher entropy is partitioned into two components – internal (I) 

and external (J).  The internal Fisher information is related to the physical, biological, systemic processes, 

which generate non-random variation(s) of the measured parameter. The external Fisher information 

component captures all aspects of the parameter measurement process. In general, the physically 

(biologically, clinically) relevant information flow goes from the fundamental internal processes to the 

experimental results, formally   𝐼 → 𝐽 . The balance between the internal processes and how they can be 

identified in the measured data is captured by the following equation: 

𝐽 = 𝜅𝐼                                                                            (23) 

where 𝜅 quantifies the extent of information lost, 𝜅 ≤ 1 (e.g. by the incomplete conversion of the 

information during the experiments) or “gained” in the interacting systems, where given measurement is 

carrying  contributions from several (or all) other system states,  𝜅 > 1. 

The functionals I and J are defined by the following integral equations: 

𝐽 ≡ 4∫ 𝑗(𝑡)𝑑𝑡 = 4∫(
𝜕𝜓

𝜕𝑡
)
2

𝑑𝑡 ⇒ 𝑗(𝑡) = �̇�2 

                                       (24) 

𝐼 ≡ 4∫ 𝑖(𝜓, 𝑡)𝑑𝑡 

                                                                (25) 

Essential role of I and J is in fact, that requirement (23) represents physically optimal situation, when 

experimental data collection is done with no (or minimal) loss of the information about the essential (non-

random) internal processes. In formal sense, requirement  
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𝐽 − 𝜅𝐼 = 0                                                                            (26) 

is the quantitative formulation of the Extreme Physical Information (EPI) principle, allowing 

implementation of the whole Fisher information based calculus. As the information optimality criterion is 

expressed in terms of integral equations (24) and (25), this condition has to be met through extreme forms 

of I and J. This second requirement leads first to the general Euler-Lagrange equation, which is then 

adapted to process I and J, as is derived next. 

Define integral function K, whose extreme we need to find 

𝐾 = ∫ 𝑑𝑥ℒ (𝑥, 𝜓(𝑥), �̇�(𝑥))
𝑏

𝑎

= 𝑒𝑥𝑡𝑟𝑒𝑚𝑒 

                                                 (27) 

To introduce needed “variability” into K, consider perturbed density amplitude 

𝜓𝜀(𝑥, 𝜀) = 𝜓(𝑥) + 𝜀𝜂(𝑥)                                                                  (28) 

We require that at the boundaries a,b of the measurement interval, the 𝜓𝜀(𝑥, 𝜀) = 𝜓(𝑥). Thus, perturbing 

function 𝜂(𝑎) = 𝜂(𝑏) = 0. With these conditions, we can look for extreme of (𝜀) : 

𝐾(𝜀) = ∫ 𝑑𝑥ℒ (𝑥, 𝜓𝜀(𝑥, 𝜀), 𝜓�̇�(𝑥, 𝜀))
𝑏

𝑎

 

                                                          (29) 

which requires 
𝜕𝐾

𝜕𝜀
= 0 at 𝜀 = 0. Computing this derivation of (29) gives 

𝜕𝐾

𝜕𝜀
= ∫ 𝑑𝑥 [

𝜕ℒ

𝜕𝜓𝜀

𝜕𝜓𝜀
𝜕𝜀

+
𝜕ℒ

𝜕�̇�𝜀

𝜕�̇�𝜀
𝜕𝜀
]

𝑏

𝑎

= ∫ 𝑑𝑥 [
𝜕ℒ

𝜕𝜓𝜀

𝜕𝜓𝜀
𝜕𝜀
] +∫ 𝑑𝑥 [

𝜕ℒ

𝜕�̇�𝜀

𝜕�̇�𝜀
𝜕𝜀
]

𝑏

𝑎

𝑏

𝑎

= ∫ 𝑑𝑥 [
𝜕ℒ

𝜕𝜓𝜀

𝜕𝜓𝜀
𝜕𝜀
] + ∫ 𝑑𝑥 [

𝜕ℒ

𝜕�̇�𝜀

𝜕2𝜓𝜀
𝜕𝑥𝜕𝜀

]
𝑏

𝑎

𝑏

𝑎

 

Integrating per partes the second integral results in 

𝜕ℒ

𝜕�̇�𝜀

𝜕𝜓𝜀
𝜕𝜀

|𝑎
𝑏 −∫ 𝑑𝑥

𝜕𝜓𝜀
𝜕𝜀

𝑏

𝑎

𝑑

𝑑𝑥
(
𝜕ℒ

𝜕�̇�𝜀
) 

as 
𝜕𝜓𝜀

𝜕𝜀
|𝑎
𝑏 = 0, we have 

𝜕𝐾

𝜕𝜀
= ∫ 𝑑𝑥

𝑏

𝑎

[
𝜕ℒ

𝜕𝜓𝜀

𝜕𝜓𝜀
𝜕𝜀

− ∫ 𝑑𝑥
𝜕𝜓𝜀
𝜕𝜀

𝑏

𝑎

𝑑

𝑑𝑥
(
𝜕ℒ

𝜕�̇�𝜀
)] = ∫ 𝑑𝑥

𝜕𝜓𝜀
𝜕𝜀

𝑏

𝑎

[
𝜕ℒ

𝜕𝜓𝜀
−
𝑑

𝑑𝑥
(
𝜕ℒ

𝜕�̇�𝜀
)]

= ∫ 𝑑𝑥
𝑏

𝑎

 𝜂(𝑥) [
𝜕ℒ

𝜕𝜓𝜀
−
𝑑

𝑑𝑥
(
𝜕ℒ

𝜕�̇�𝜀
)] = 0 

As 𝜂(𝑥) is arbitrary, this integral can be zero only when  

𝜕ℒ

𝜕𝜓𝜀
=
𝑑

𝑑𝑥
(
𝜕ℒ

𝜕�̇�𝜀
) 

                                                                   (30) 
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Eq. (30) is the Euler-Lagrange equation. For processing Fisher information, we set ℒ = 𝑗 − 𝑖: 

𝑑

𝑑𝑡
(
𝜕(𝑗 − 𝑖)

𝜕�̇�
) =

𝜕(𝑗 − 𝑖)

𝜕𝜓
   𝑎𝑛𝑑     𝑗 − 𝜅𝑖 = �̇�2 − 𝜅𝑖(𝜓, 𝑡) = 0 

                                         (31) 

 where 𝑖 = 𝑖(𝜓, 𝑡), 𝑗 = �̇�2 and solve simultaneously: 

𝑑

𝑑𝑡
(
𝜕 (�̇�2 − 𝑖(𝜓, 𝑡))

𝜕�̇�
) =

𝜕 (�̇�2 − 𝑖(𝜓, 𝑡))

𝜕𝜓
,
𝜕�̇�2

𝜕𝜓
−
𝜕𝑖(𝜓, 𝑡)

𝜕𝜓
= −

𝜕𝑖(𝜓, 𝑡)

𝜕𝜓
 

−
𝜕𝑖(𝜓, 𝑡)

𝜕𝜓
=
𝑑

𝑑𝑡
(
𝜕 (�̇�2 − 𝑖(𝜓, 𝑡))

𝜕�̇�
) =

𝑑

𝑑𝑡
(
𝜕�̇�2

𝜕�̇�
−
𝜕𝑖(𝜓, 𝑡)

𝜕�̇�
) =

𝑑

𝑑𝑡
(2�̇�) = 2

𝑑

𝑑𝑡
(
𝑑𝜓

𝑑𝑡
) = 2

𝑑2𝜓

𝑑𝑡2
 

2
𝑑2𝜓

𝑑𝑡2
= −

𝜕𝑖(𝜓, 𝑡)

𝜕𝜓
 

                                                                      (32) 

Next we use �̇�2 = 𝜅𝑖(𝜓, 𝑡) and differentiate both sides by 𝑑 𝑑𝑡⁄  and use (32) in the result: 

2�̇�
𝑑2𝜓

𝑑𝑡2
= 𝜅 [

𝜕𝑖

𝜕𝑡
+
𝜕𝑖

𝜕𝜓

𝜕𝜓

𝜕𝑡
] ⇒ −�̇�

𝜕𝑖

𝜕𝜓
= 𝜅 [

𝜕𝑖

𝜕𝑡
+
𝜕𝑖

𝜕𝜓
�̇�] 

                              (33) 

From �̇�2 − 𝜅𝑖(𝜓, 𝑡) = 0 we have �̇� = √𝜅 √ 𝑖(𝜓, 𝑡)   and (33) becomes 

−√𝜅 √ 𝑖  
𝜕𝑖

𝜕𝜓
= 𝜅 [

𝜕𝑖

𝜕𝑡
+
𝜕𝑖

𝜕𝜓
√𝜅 √ 𝑖  ] 

−√𝜅

√𝜅
√ 𝑖  

𝜕𝑖

𝜕𝜓
=
𝜅

√𝜅

𝜕𝑖

𝜕𝑡
+
𝜅√𝜅

√𝜅
√ 𝑖  

𝜕𝑖

𝜕𝜓
 

−√ 𝑖  
𝜕𝑖

𝜕𝜓
= √𝜅

𝜕𝑖

𝜕𝑡
+ 𝜅√ 𝑖  

𝜕𝑖

𝜕𝜓
 

−√ 𝑖  
𝜕𝑖

𝜕𝜓
− 𝜅√ 𝑖  

𝜕𝑖

𝜕𝜓
= √𝜅

𝜕𝑖

𝜕𝑡
 

−√ 𝑖  
𝜕𝑖

𝜕𝜓
(1 + 𝜅) = √𝜅

𝜕𝑖

𝜕𝑡
 

√𝜅
𝜕𝑖

𝜕𝑡
+ √ 𝑖  

𝜕𝑖

𝜕𝜓
(1 + 𝜅) = 0 

                                                             (34) 

Differential equation (34) can be solved by separation of variables, using  

𝑖 = 𝑖𝜓(𝜓)𝑖𝑡(𝑡)                                                                        (35) 
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Substituting (35) into (34) gives 

(1 + 𝜅)√𝑖𝜓𝑖𝑡
𝜕𝑖𝜓

𝜕𝜓
𝑖𝑡 + √𝜅

𝜕𝑖𝑡
𝜕𝑡
𝑖𝜓 = 0 

(1 + 𝜅)𝑖
𝜓

1
2 𝑖𝑡

3
2
𝜕𝑖𝜓

𝜕𝜓
+ √𝜅

𝜕𝑖𝑡
𝜕𝑡
𝑖𝜓 = 0 

multiplying by    
1

𝑖𝜓
.
1

𝑖𝑡

3
2⁄
 gives 

(1 + 𝜅)
1

√𝑖𝜓

𝜕𝑖𝜓

𝜕𝜓
+ √𝜅

1

√𝑖𝑡
3

𝜕𝑖𝑡
𝜕𝑡
= 0 

                                                          (36) 

The sum of the two terms on the left hand side of (36) can be equal to zero only if the both terms are 

equal to the same constant with opposite signs: 

(1 + 𝜅)
1

√𝑖𝜓

𝜕𝑖𝜓

𝜕𝜓
= 𝐴,        √𝜅

1

√𝑖𝑡
3

𝜕𝑖𝑡
𝜕𝑡
= −𝐴 

                                               (37) 

Equations (37) can be integrated 

∫
1

√𝑖𝜓
 𝑑𝑖𝜓 =

𝐴

(1 + 𝜅)
∫𝑑𝜓 ,           

1

√𝑖𝑡
3

∫𝑑𝑖𝑡 = −
𝐴

√𝜅
∫𝑑𝑡 

√𝑖𝜓 −
1

2

𝐴𝜓

(1 + 𝜅)
+ 𝐵 = 0 

Squaring 

𝑖𝜓 −
1

4
(
𝐴𝜓

(1 + 𝜅)
+ 𝐵)

2

= 0        ⇒     𝑖𝜓 =
1

4
(
𝐴𝜓

(1 + 𝜅)
+ 𝐵)

2

 

                                (37) 

For 𝑖𝑡 we get similarly 

𝑖𝑡 = 4(
𝐴𝑡

√𝜅
+ 𝐶)

−2

 

                                                                              (38) 

Combining (37) and (38) into (35) results in 

𝑖(𝜓, 𝑡) = 𝑖𝜓. 𝑖𝑡 =
4

4
(

𝐴𝜓
(1 + 𝜅)

+ 𝐵

𝐴𝑡

√𝜅
+ 𝐶

)

2
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                                                                   (39) 

Because 
𝑑𝜓

𝑑𝑡
= √𝑖(𝜓, 𝑡) and thus 𝑑𝜓 = √𝑖(𝜓, 𝑡)𝑑𝑡, (39) becomes 

𝑑𝜓

𝐴𝜓
(1 + 𝜅)

+ 𝐵
=

𝑑𝑡

𝐴𝑡

√𝜅
+ 𝐶

 

which is integrated to obtain 𝜓: 

 

𝜓 = (
(1 + 𝜅)

𝐴
)(
𝐴𝑡

𝜅
+ 𝐷)

(
𝜅
1+𝜅

)

− (1 + 𝜅)
𝐵

𝐴
 

                                                  (40) 

Some constants in the general solution (40) can be found by boundary conditions: at t=0, B=0, D=0, giving 

finally  

𝜓(𝑡) = (
1 + 𝜅

𝐴
) (
𝐴

𝜅
) 𝑡

(
𝜅
1+𝜅

)
= 𝐸𝑡𝛼 

                                                      (41) 

Time-dependent processes (such as tumor growth, plaque deposit, drug transport etc.) encode into the 

Fisher entropy the information about the functional (intrinsic) and assay-dependent (extrinsic) factors, 

influencing the probability densities of the dependent clinical variable values. Fisher information allows 

quantitative characterization and extraction of this unique information from the experimental probability 

density estimates. What follows is the outline of the underlying mathematics. 

In a growing system, there are N types of entities/states (patients, cells, etc.), which provide the 

information into the Fisher entropy-based data processing. The set of these states is finite, with cardinality 

M. This is expressed as follows: 

𝑀 = ∑𝑚𝑛

𝑁

𝑛=1

 

                                                                            (42) 

Probability density 𝜌𝑛 of values, related to one state n is defined as the frequency of observing a value, 

characteristic for that state n: 

𝜌𝑛 =
𝑚𝑛

𝑀
                                                                                (43) 

The complete system description uses the probability density vector �⃗� = [𝜌1, … , 𝜌𝑁]. The probability 

density has the following properties – for growth and transport processes, 𝜌𝑛 = 𝜌𝑛(𝑡) i.e. it is a function 

of time. 𝜌𝑛 is also normalized, from which the following property of its time derivatives (gradients) follows: 

∑𝜌𝑛

𝑁

𝑛=1

= 1 ⇒ ∑
𝑑𝑖𝜌𝑛
𝑑𝑡𝑖

1

𝑛=1

= 0 

                                                           (44) 
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Analysis of the components of the overall probability density �⃗� provides the fundamental description of 

its dynamics using the following N equations: 

𝑑𝜌𝑛
𝑑𝑡

= �̇�𝑛 = 𝜌𝑛(𝑔𝑛 + 𝑑𝑛) 

                                                              (45) 

where 𝑔𝑛 is creation coefficient and 𝑑𝑛 is depletion coefficient, characterizing quantitatively processes, 

in which the system states, generating characteristic parameter values are emerging (for example a 

patient’s disease progressed from ‘moderate’  to ‘serious’ status, accompanied by the increase of the 

clinical status marker values above certain threshold(s)). In simple terms, this relationship indicates, that 

the rate, with which the probability of assaying certain clinical state is changing, is proportional to the 

probability density 𝜌𝑛 of experimental finding that result.  The extent of this proportionality between the 

density dynamics and density itself is dependent upon equilibrium between the state creation and 

annihilation processes in the studied patient. Essential for the application of Fisher information paradigm 

in the Personalized Network Medicine is the fact that the state creation and depletion processes, 

described quantitatively by functions 𝑔𝑛 and 𝑑𝑛, depend on the interactions between all states of the 

concrete individual patient. To quantify this important statement, we realize that state creation and 

depletion parameters in the equation (45) are dependent upon all other states of the system: 

𝑔𝑛 = ∑ 𝑔𝑛𝑘

𝐾≤𝑁

𝑘=1

𝜌𝑘 

   with                                                       𝑔𝑛𝑘 ≡ 𝑔𝑛𝑘(�⃗�, 𝑡),        𝑑𝑛 ≡ 𝑑𝑛(�⃗�, 𝑡)                                                 (46) 

Computing  𝜌𝑛 = 𝜓𝑛
2   from tumor growing law gives 𝜌𝑛 = 𝐸

2𝑡2𝛼 = �̃�𝑡𝛾. Differentiation by time allows 

checking if the solution (41), applied to a concrete problem of tumor growth, satisfies the general growth 

relationship (45) : 

�̇�𝑛 =
𝑑�̃�𝑡𝛾

𝑑𝑡
= �̃�𝛾𝑡(𝛾−1) 

This equals to (45) with (𝑔𝑛 + 𝑑𝑛) =
𝛾

𝑡
: 

�̃�𝛾𝑡(𝛾−1) = �̃�𝑡𝛾 (
𝛾

𝑡
) 

                                                                      (47) 

By identifying 𝑔(𝜌𝑛, 𝑡) = (
𝜅

1+𝜅
) (

1

𝑡
),  we see that the first term indicates the extent of interacting 

(biological) states, contributing to the tumor growth and the second, time dependent term, indicates that 

with increasing time the creation rate of the tumor slows down (in agreement with the known facts: 

Studies have shown that tumor growth rate may decline with time (Hart, Shochat et al. 1998;Bajzer 1999; 

Afenya and Calderon 2000), which results in non-exponential growth model of tumors. Growth 

deceleration has been observed in animal models (Wennerberg, Willen et al.1988), for solid tumors in 

clinical studies (Spratt, von Fournier et al. 1993; Spratt, Meyer et al.1996), and in leukemia (Afenya and 

Calderon 2000). Growth deceleration is attributed to several factors, including prolonged cell cycle, 

reduced growth fraction, decreased availability of oxygen (Pavelic, Porter et al. 1978), decreased cell 
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proliferation rate with increased cell loss rate (Bassukas and Maurer-Schultze 1987), tumor-related 

systemic factors (DeWys 1972), and allometric growth control (Prehn 1991)). 

In eq. (47), E and 𝛾 are constants to be determined from study data. E is the cancer-type specific 

“amplitude”, summarizing all non-tumor mass related tumorigenesis processes  and 𝛾 = (
𝜅

1+𝜅
) is the rate 

constant, describing the probability gradient rate of finding certain tumor mass in the patient’s cohort at 

baseline (when CT scan of the tumor was taken). Note (for interpretation purposes) that 𝛾 is solely 

determined by 𝜅, the parameter, which is proportional to the number of all INTERACTING intercellular 

biological processes, influencing the tumor growth.  

Still, both sides of (47) are (continuous and general) functions of time. To personalize this general result, 

we therefore need to express explicitly the change of 𝜓(𝑡) and  𝐸. 𝑡𝛾 with time and integrate the resulting 

formulae up to the time, when the patient’s tumor mass was observed in clinic. To facilitate direct 

comparison with tumor mass histogram, we use 𝜓2 =  𝜌(𝑇𝑚𝑎𝑠𝑠, 𝑡): 

∫ 𝜌(𝑡)
𝑡=𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡=0

= 𝐸2∫ 𝑡2𝛾𝑑𝑡
𝑡=𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡=0

 

                                                     (48) 

Carrying the integration, we obtain the following functions of the (personal) upper integration limit 

𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒: 

 

∫ 𝜌(𝑡)𝑑𝑡
𝑡=𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡=0

= 𝑃𝑖𝑛𝑡𝑔 

                                                                         (49) 

  

𝐸2∫ 𝑡2𝛾𝑑𝑡
𝑡=𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒

𝑡=0

=
𝐸2 (𝑡𝑜𝑛𝑠𝑒𝑡

(2𝛾+1)
− 1)

(2𝛾 + 1)
= 𝑃𝑖𝑛𝑡𝑔 

                                                (50) 

 

The personal parameter 𝑃𝑖𝑛𝑡𝑔 is obtained by integrating the (normalized) histogram of the study tumor 

masses, up to the value found for a patient. We can then solve the last equation for 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, obtaining  

the final formula (Ω𝑜 is cancer-type specific constant): 

𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 = Ω𝑜𝑒(

 
 
𝑙𝑛[
2𝛾.𝑃𝑖𝑛𝑡𝑔+𝑃𝑖𝑛𝑡𝑔+𝐸

2

𝐸2
]

(2𝛾+1)

)

 
 

 
                                                                  (51) 

The first step in applying these theoretical result to actual data is to verify, that the actual Tmass histogram 

is compatible with the “power law” (47).  By considering the Tmass proportional to disease duration 
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(which is equivalent to taking the first terms of the Taylor expansion of that relationship), we have 

 𝜌(𝑇𝑚𝑎𝑠𝑠) = 𝜓2(𝑇𝑚𝑎𝑠𝑠) = �̃�2. 𝑇𝑚𝑎𝑠𝑠2𝛾, and taking the logarithms we have 

𝑙𝑛(𝜌(𝑇𝑚𝑎𝑠𝑠)) = 𝑙𝑛(�̃�2) + 2𝛾. 𝑙𝑛(𝑇𝑚𝑎𝑠𝑠)                                                                (52) 

indicating that if the (normalized) tumor mass histogram is presented in the log-log representation, the 

logarithm of 𝜌(𝑇𝑚𝑎𝑠𝑠) should be linear function of logarithm of Tmass, with 𝑙𝑛(�̃�2) being equal to 

intercept and 2𝛾 to the slope of that relationship. 

 

Fig. 1a) shows the original histogram for cohort of 641 HCC patients (Pittsburgh cohort, details published 

in refs xxx). Fig. 1b) shows that histogram converted into log-log scales. It is observed that these clinical 

data are reflecting two tumor-growth processes. The first linear relationship describes the Fisher 

information related processes for tumors with masses less or equal to Tmass=70, the second linear 

relationship holds for tumors with masses larger than 70. The least-squared fits by the two linear 

relationships are shown, with the values of the parameters, needed to compute 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, indicated. 

Fig. 2a) shows the use of eq. (49) to compute the Pintg for one patient from the histogram of observed 

tumor masses. Fig. 2b) shows the plot of 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 as the function of Pintg, computed from the respective 

tumor masses, considering explicitly the presence of the two rates of the probability density gradients in 

eq. (51). Note that Fisher information processing indicates, that hepatocellular tumor growth is 

heterogeneous, but with just two significant types of growth processes. One type describes the smaller 

tumors, Tmass below 70, the other the tumor with masses above 70. By using the estimated values of 𝛾1 

and 𝛾2 and definition 𝛾𝑖 = (
𝜅𝑖

1+𝜅𝑖
), we find that 

𝜅1

κ2
= 2.8, indicating that earlier stages of the tumor growth 
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are more sensitive to the overall clinical context of the patient (e.g. in terms of micro- and macro-

environmental factors, ref xx). Our Fisher entropy-based analysis thus showed that growth of these 

smaller tumors, which constituted about 80% of all tumors found in this US/Pittsburgh cohort, involved 

on average ~3 times more interacting cellular processes than were observable for multiple, very large 

tumors with total masses above 70, observed for remaining 20% of screened patients.  

The last step of the converting of the Tmass data into 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 through eq. (2) is finding the cancer-type 

specific constant, Ω𝑜, which will convert the relative time units of the exponential term of the eq. (2) to 

actual days. We determine Ω𝑜 as a constant that will reproduce best the survival prognosis computed 

from the coherence baseline descriptors HL1 of our patients. This was done by the following systematic 

procedure: we varied Ω𝑜 value from 0 to 10 000 days with 10 day increment. For each of these values of 

Ω𝑜, we corrected the patient’s survival by the value Tbaseline=Ω𝑜. 𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 : OVSC=OVS-Tbaseline and fitted 

the resulting set of 641 

OVSC values by  log(OVSC) 

= 3 x HL1
3 + 2 x HL1

2+ 

1 x HL1 + q. Fig. 3 shows 

the residual standard 

deviations of the fits OVSC 

– HL1, which used those 

systematically varied 

values of Ω𝑜. The Ω𝑜= 

1200 days, representing 

the minimum residual 

range between the actual 

and prognosed   OVSC 

values is the value of this 

constant, characterizing 

the hepatocellular cancer.   
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Main result is that within the 15 clinical coherence categories, the shortest OVS are due to largest 

𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒, corresponding (by the corresponding law) to the largest tumors. What remains after the 

𝑡𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 correction are coherence context components of the OVS, that exhibit good functional 

relationship (good fit) and have significantly narrower range of differences between the predicted and 

actual OVS. 

 

 

 

 
 

 


